【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標值衡量,并依據(jù)質(zhì)量指標值劃分等級如下表:

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:

(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品”的規(guī)定?

(2)在樣本中,按產(chǎn)品等級用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標值近似滿足,則“質(zhì)量提升月”活動后的質(zhì)量指標值的均值比活動前大約提升了多少?

【答案】(1)見解析;(2).(2)質(zhì)量提升月”活動后的質(zhì)量指標值的均值比活動前大約提升了.

【解析】試題分析:(1)根據(jù)頻率分布直方圖,一、二等品所占比例的估計值為

,可做出判斷.

(2)由頻率分布直方圖的頻率分布可知8件產(chǎn)品中,一等品3件,二等品4件,三等品1件,分類討論各種情況可得.

(3)算出“質(zhì)量提升月”活動前,后產(chǎn)品質(zhì)量指標值為,可得質(zhì)量指標值的均值比活動前大約提升了17.6

試題解析:(1)根據(jù)抽樣調(diào)查數(shù)據(jù),一、二等品所占比例的估計值為,由于該估計值小于0.92,故不能認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品92%”的規(guī)定.

(2)由頻率分布直方圖知,一、二、三等品的頻率分別為0.375、0.5、0.125,故在樣本中用分層抽樣方法抽取的8件產(chǎn)品中,一等品3件,二等品4件,三等品1件,再從這8件產(chǎn)品中隨機抽取4件,一、二、三等品都有的情況有2種:①一等品2件,二等品1件,三等品1件;②一等品1件,二等品2件,三等品1件,故所求的概率.

(3)“質(zhì)量提升月”活動前,該企業(yè)這種產(chǎn)品的質(zhì)量指標值的均值約為

“質(zhì)量提升月”活動后,產(chǎn)品質(zhì)量指標值近似滿足,則.

所以,“質(zhì)量提升月”活動后的質(zhì)量指標值的均值比活動前大約提升了17.6

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐PABCD中,ABAD,ADDC,PA⊥底面ABCD, ,MPC的中點,N點在AB上且.

(1)證明:MN∥平面PAD;

(2)求直線MN與平面PCB所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,其導函數(shù)為.

(1)設(shè),若函數(shù)上有且只有一個零點,求的取值范圍;

(2)設(shè),且,點是曲線上的一個定點,是否存在實數(shù),使得成立?證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)在點(1,1)處的切線方程為xy2.

(1)a,b的值;

(2)對函數(shù)f(x)定義域內(nèi)的任一個實數(shù)x,不等式f(x)0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,E,F分別是AD,DD1的中點.

求證:(1)EF∥平面C1BD;

(2)A1C⊥平面C1BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正方體ABCDABCD′的棱長為1,E,F分別是棱AACC′的中點,過直線EF的平面分別與棱BBDD′分別交于M,N兩點,設(shè)BMx,x[0,1]給出以下四個結(jié)論:

①平面MENF⊥平面BDDB;

②直線AC∥平面MENF始終成立;

③四邊形MENF周長Lf(x),x[0,1]是單調(diào)函數(shù);

④四棱錐CMENF的體積Vh(x)為常數(shù);

以上結(jié)論正確的是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,該幾何體是由一個直三棱柱和一個正四棱錐組合而成, ,

(Ⅰ)證明:平面平面

(Ⅱ)求正四棱錐的高,使得二面角的余弦值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,過且與軸垂直的弦長為3.

(1)求橢圓的標準方程;

(2)過作直線與橢圓交于兩點,問:在軸上是否存在點,使為定值,若存在,請求出點坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我校為豐富師生課余活動,計劃在一塊直角三角形的空地上修建一個占地面積為(平方米)的矩形健身場地,如圖,點上,點上,且點在斜邊上,已知, 米, 米, .設(shè)矩形健身場地每平方米的造價為元,再把矩形以外(陰影部分)鋪上草坪,每平方米的造價為元(為正常數(shù))

(1)試用表示,并求的取值范圍;

(2)求總造價關(guān)于面積的函數(shù);

(3)如何選取,使總造價最低(不要求求出最低造價)

查看答案和解析>>

同步練習冊答案