如圖所示,已知圓O:x2+y2=1直線l:y=kx+b(b>0)是圓的一條切線,且l與橢圓交于不同的兩點A,B.
(Ⅰ)若△AOB的面積等于,求直線l的方程;
(Ⅱ)設(shè)△AOB的面積為S,且滿足≤S≤,求的取值范圍。
解:(Ⅰ)由題意,可知,∴,
,得
,
而O到直線AB的距離為,
則有,解得:k=±1,
所求直線l的方程為。
(Ⅱ)由題意,可知,

設(shè),

,
根據(jù)韋達(dá)定理,得,
代入上式,得,
。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知圓O:x2+y2=1,直線l:y=kx+b(b>0)是圓的一條切線,且l與橢圓
x2
2
+y2=1
交于不同的兩點A、B.
(1)若△AOB的面積等于
2
3
,求直線l的方程;
(2)設(shè)△AOB的面積為S,且滿足
6
4
≤S≤
2
6
7
,求
OA
OB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知圓O:x2+y2=1,直線l:y=kx+b(k>0,b>0)是圓的一條切線,且l與橢圓
x2
2
+y2=1
交于不同的兩點A,B.
(1)若弦AB的長為
4
3
,求直線l的方程;
(2)當(dāng)直線l滿足條件(1)時,求
OA
OB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知圓O:x2+y2=4,直線m:kx-y+1=0.
(1)求證:直線m與圓O有兩個相異交點;
(2)設(shè)直線m與圓O的兩個交點為A、B,求△AOB面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶一模)(幾何證明選講選做題)
如圖所示,已知圓O的半徑為2,從圓O外一點A引切線AB和割線AD,C為AD與圓O的交點,圓心O到AD的距離為
3
,AB=
15
,則AC的長為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•衡陽模擬)如圖所示,已知圓O直徑AB=
6
,C為圓O上一點,且BC=
2
,過點B的切線交AC延長線于點D,則DA=
3
3

查看答案和解析>>

同步練習(xí)冊答案