【題目】如圖1,2,在Rt△ABC中,AB=BC=4,點E在線段AB上,過點E作交AC于點F,將△AEF沿EF折起到△PEF的位置(點A與P重合),使得∠PEB=60°.

(1)求證:EF⊥PB;
(2)試問:當(dāng)點E在何處時,四棱錐P﹣EFCB的側(cè)面的面積最大?并求此時四棱錐P﹣EFCB的體積及直線PC與平面EFCB所成角的正切值.

【答案】
(1)證明:∵EF∥BC且BC⊥AB,

∴EF⊥AB,即EF⊥BE,EF⊥PE.又BE∩PE=E,

∴EF⊥平面PBE,又PB平面PBE,

∴EF⊥PB


(2)證明:解:設(shè)BE=x,PE=y,則x+y=4.

當(dāng)且僅當(dāng)x=y=2時,SPEB的面積最大,此時,BE=PE=2.

由(1)知EF⊥平面PBE,

∵EF平面EFCB,∴平面EFCB⊥平面PBE.

在平面PBE中,作PO⊥BE于O,則PO⊥平面EFCB.

即PO為四棱錐P﹣EFCB的高.

∴BO=1,在Rt△OBC中,

∵PO⊥平面EFCB,∴∠PCO就是PC與平面EFCB所成角.

,

故直線PC與平面EFCB所成角的正切值為


【解析】(1)推導(dǎo)出EF⊥AB,EF⊥BE,EF⊥PE,由此能證明EF⊥PB. (2)設(shè)BE=x,PE=y,則x+y=4,當(dāng)且僅當(dāng)x=y=2時,SPEB的面積最大,此時,BE=PE=2.EF⊥平面PBE,從而平面EFCB⊥平面PBE.作PO⊥BE于O,則PO為四棱錐P﹣EFCB的高,∠PCO就是PC與平面EFCB所成角.由此能求出結(jié)果.
【考點精析】掌握空間中直線與直線之間的位置關(guān)系和空間角的異面直線所成的角是解答本題的根本,需要知道相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,側(cè)面為矩形, , 的中點, 交于點,且平面

1)證明:平面平面;

2)若 的重心為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:不等式2x﹣x2<m對一切實數(shù)x恒成立,命題q:m2﹣2m﹣3≥0,如果¬p與“p∧q”同時為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在測試中,客觀題難題的計算公式為,其中為第題的難度, 為答對該題的人數(shù), 為參加測試的總?cè)藬?shù).現(xiàn)對某校高三年級120名學(xué)生進行一次測試,共5道客觀題.測試前根據(jù)對學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:

測試后,從中隨機抽取了10名學(xué)生,將他們編號后統(tǒng)計各題的作答情況,如下表所示(“√”表示答對,“×”表示答錯):

(1)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實測的答對人數(shù)及相應(yīng)的實測難度填入下表,并估計這120名學(xué)生中第5題的實測答對人數(shù);

(2)從編號為1到5的5人中隨機抽取2人,求恰好有1人答對第5題的概率;

(3)定義統(tǒng)計量,其中為第題的實測難度, 為第題的預(yù)估難度(.規(guī)定:若,則稱該次測試的難度預(yù)估合理,否則為不合理.判斷本次測試的難度預(yù)估是否合理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若{ 、 }為空間的一組基底,則下列各項中,能構(gòu)成基底的一組向量是(
A. , + ,
B. , + ,
C. + ,
D. + , , +2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= 的定義域為(
A.(﹣1,1]
B.(﹣1,0)∪(0,1]
C.(﹣1,1)
D.(﹣1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC= ,D,E分別是AC1和BB1的中點,則直線DE與平面BB1C1C所成的角為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為坐標(biāo)原點,雙曲線C: =1(a>0,b>0)的左焦點為F(﹣c,0)(c>0),以O(shè)F為直徑的圓交雙曲線C的漸近線于A,B,O三點,且( + =0,若關(guān)于x的方程ax2+bx﹣c=0的兩個實數(shù)根分別為x1和x2 , 則以|x1|,|x2|,2為邊長的三角形的形狀是(
A.鈍角三角形
B.直角三角形
C.銳角三角形
D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時,,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案