【題目】已知函數(shù)f (x)=ln x+x2-ax(a為常數(shù)).
(1)若x=1是函數(shù)f (x)的一個(gè)極值點(diǎn),求a的值;
(2)當(dāng)0<a≤2時(shí),試判斷f (x)的單調(diào)性;
(3)若對(duì)任意的a∈(1,2),x0∈[1,2],不等式f (x0)>mln a 恒成立,求實(shí)數(shù)m的取值范圍.
【答案】(1)3;(2)見解析;(3)
【解析】試題分析:(1)求出,由列方程即可求的值;(2)求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間;;(3)問題等價(jià)于:對(duì)任意的,不等式恒成立,即恒成立,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根單調(diào)性求出的最小值,進(jìn)而可得結(jié)果.
試題解析: f ′(x)=+2x-a.
(1)由已知得:f ′(1)=0,所以1+2-a=0,所以a=3,經(jīng)驗(yàn)證符合題意.
(2)當(dāng)0<a≤2時(shí),f ′(x)=+2x-a=
=.
因?yàn)?<a≤2,所以1->0,而x>0,
即f ′(x)=>0,
故f (x)在(0,+∞)上是增函數(shù).
(3)當(dāng)a∈(1,2)時(shí),由(2)知,f (x)在[1,2]上的最小值為f (1)=1-a,
故問題等價(jià)于:對(duì)任意的a∈(1,2),
不等式1-a>mln a恒成立,即m<恒成立.
記g(a)= (1<a<2),則g′(a)=.
令M(a)=-aln a-1+a,則M′(a)=-ln a<0,
所以M(a)在(1,2)上單調(diào)遞減,
所以M(a)<M(1)=0,故g′(a)<0,
所以g(a)=在a∈(1,2)上單調(diào)遞減,
所以m≤g(2)==-log2e,
即實(shí)數(shù)m的取值范圍為(-∞,-log2e].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義滿足不等式|xA|<B(A∈R,B>0)的實(shí)數(shù)x的集合叫做A的B鄰域.若a+bt(t為正常數(shù))的a+b鄰域是一個(gè)關(guān)于原點(diǎn)對(duì)稱的區(qū)間,則a2+b2的最小值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)對(duì)任意實(shí)數(shù)x、y恒有f(x)+f(y)=f(x+y),且當(dāng)x>0時(shí),f(x)<0,又f(1)=-.
(1)求證:f(x)為奇函數(shù);
(2)求證:f(x)在R上是減函數(shù);
(3)求f(x)在[-3,6]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A. 是向量,不共線的充要條件
B. 在空間四邊形中,
C. 在棱長為1的正四面體中,
D. 設(shè),,三點(diǎn)不共線,為平面外一點(diǎn),若,則,,,四點(diǎn)共面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)在拋物線外,過點(diǎn)作拋物線的兩切線,設(shè)兩切點(diǎn)分別為,,記線段的中點(diǎn)為.
(Ⅰ)求切線,的方程;
(Ⅱ)證明:線段的中點(diǎn)在拋物線上;
(Ⅲ)設(shè)點(diǎn)為圓上的點(diǎn),當(dāng)取最大值時(shí),求點(diǎn)的縱坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年10月9日,教育部考試中心下發(fā)了《關(guān)于2017年普通高考考試大綱修訂內(nèi)容的通知》,在各科修訂內(nèi)容中明確提出,增加中華優(yōu)秀傳統(tǒng)文化的考核內(nèi)容,積極培育和踐行社會(huì)主義核心價(jià)值觀,充分發(fā)揮高考命題的育人功能和積極導(dǎo)向作用.宿州市教育部門積極回應(yīng),編輯傳統(tǒng)文化教材,在全市范圍內(nèi)開設(shè)書法課,經(jīng)典誦讀等課程.為了了解市民對(duì)開設(shè)傳統(tǒng)文化課的態(tài)度,教育機(jī)構(gòu)隨機(jī)抽取了200位市民進(jìn)行了解,發(fā)現(xiàn)支持開展的占,在抽取的男性市民120人中持支持態(tài)度的為80人.
(Ⅰ)完成列聯(lián)表,并判斷是否有的把握認(rèn)為性別與支持與否有關(guān)?
(Ⅱ)為了進(jìn)一步征求對(duì)開展傳統(tǒng)文化的意見和建議,從抽取的200位市民中對(duì)不支持的按照分層抽樣的方法抽取5位市民,并從抽取的5人中再隨機(jī)選取2人進(jìn)行座談,求選取的2人恰好為1男1女的概率.
附: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,其左焦點(diǎn)與拋物線的焦點(diǎn)重合.
(1)求橢圓的方程;
(2)過動(dòng)點(diǎn)的直線交軸于點(diǎn),交橢圓于點(diǎn),在第一象限,,過點(diǎn)做軸的垂線交橢圓于點(diǎn),連接并延長交橢圓于另一點(diǎn).設(shè)直線的斜率分別為,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A. 消耗1升汽油,乙車最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C. 甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油
D. 某城市機(jī)動(dòng)車最高限速80千米/小時(shí). 相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在[-1,1]上的奇函數(shù),且,若任意的,當(dāng)時(shí),總有.
(1)判斷函數(shù)在[-1,1]上的單調(diào)性,并證明你的結(jié)論;
(2)解不等式:;
(3)若對(duì)所有的恒成立,其中(是常數(shù)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com