已知P點(diǎn)在以坐標(biāo)軸為對(duì)稱軸的橢圓上,點(diǎn)P到兩焦點(diǎn)的距離分別為4和2,過(guò)P點(diǎn)作焦點(diǎn)所在軸的垂線,它恰好過(guò)橢圓的一個(gè)焦點(diǎn),求橢圓方程.
分析:先假設(shè)出橢圓的標(biāo)準(zhǔn)形式,再由P到兩焦點(diǎn)的距離分別為4、3得到2a=4+3得到a的值,結(jié)合過(guò)P且與長(zhǎng)軸垂直的直線恰過(guò)橢圓的一個(gè)焦點(diǎn),可求得c的值,進(jìn)而可求得橢圓的方程.
解答:解:設(shè)所求的橢圓方程為
x2
a2
+
y2
b2
=1
(a>b>0)或
y2
a2
+
x2
b2
=1
(a>b>0),
由已知條件得
2a=4+2
(2c)2=42-22
a2=b2+c2
,
a=3,c=
3
,b2=6.
故所求方程為
x2
9
+
y2
6
=1
y2
9
+
x2
6
=1
點(diǎn)評(píng):本題主要考查橢圓的基本性質(zhì)的運(yùn)用.橢圓的基本性質(zhì)是高考的重點(diǎn)內(nèi)容,一定要熟練掌握并能夠靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P點(diǎn)在以坐標(biāo)軸為對(duì)稱軸的橢圓上,點(diǎn)P到兩焦點(diǎn)的距離分別為
4
5
3
2
5
3
,過(guò)P作長(zhǎng)軸的垂線恰好過(guò)橢圓的右焦點(diǎn),求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P點(diǎn)在以坐標(biāo)軸為對(duì)稱軸的橢圓上,點(diǎn)P到兩焦點(diǎn)的距離分別為,過(guò)P作長(zhǎng)軸的垂線恰好過(guò)橢圓的一個(gè)焦點(diǎn),求橢圓的方程.?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下列條件求橢圓的標(biāo)準(zhǔn)方程:

(1)已知P點(diǎn)在以坐標(biāo)軸為對(duì)稱軸的橢圓上,點(diǎn)P到兩焦點(diǎn)的距離分別為,過(guò)P作長(zhǎng)軸的垂線恰好過(guò)橢圓的一個(gè)焦點(diǎn);

(2)經(jīng)過(guò)兩點(diǎn)A(0,2)和B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P點(diǎn)在以坐標(biāo)軸為對(duì)稱軸的橢圓上,點(diǎn)P到兩焦點(diǎn)的距離分別為,過(guò)P作長(zhǎng)軸的垂線恰好過(guò)橢圓的一個(gè)焦點(diǎn),求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案