【題目】某學校高三年級在開學時舉行了入學檢測.為了了解本年級學生寒假期間歷史的學習情況,現(xiàn)從年級名文科生中隨機抽取了名學生本次考試的歷史成績,得到他們歷史分數(shù)的頻率分布直方圖如圖.已知本次考試高三年級歷史成績分布區(qū)間為.

1)求圖中的值;

2)根據(jù)頻率分布直方圖,估計這名學生歷史成績的平均分,眾數(shù);(每組數(shù)據(jù)用該組的區(qū)間中點值作代表)

3)已知該學校每年高考有%的同學歷史成績在一本線以上,用樣本估計總體的方法,請你估計本次入學檢測歷史學科劃定的一本線該為多少分?

【答案】1;(2)平均數(shù)為,眾數(shù)為;(3

【解析】

1)根據(jù)頻率和為,即可求出的值;

2)根據(jù)頻率直方圖,取頻率最大組的中值即為眾數(shù);由平均數(shù)公式即可求出結論;

3)先確定從小到大概率和為所在的組,以及在該組所在的比例,即可求出結果.

1)依題意得,,

解得;

2)估計這名學生歷史成績的平均分為,

眾數(shù)為;

(3)的頻率和為,的頻率為

所以估計本次入學檢測歷史學科劃定的一本線為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示多面體中,AD⊥平面PDC,四邊形ABCD為平行四邊形,點E,F分別為AD,BP的中點,AD3,AP3,PC

1)求證:EF//平面PDC

2)若∠CDP120°,求二面角ECPD的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,證明:對任意,存在,使得;

2)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在多邊形中,四邊形為等腰梯形,,,,四邊形為直角梯形,,.以為折痕把等腰梯形折起,使得平面平面,如圖2所示.

1)證明:平面

2)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果兩個方程的曲線經(jīng)過若干次平移或對稱變換后能夠完全重合,則稱這兩個方程為“互為鏡像方程對”,給出下列四對方程:

互為鏡像方程對的是(

A.①②③B.①③④C.②③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,短軸的一個端點到右焦點的距離為2

1)求橢圓的方程;

2)設分別為橢圓的左、右頂點,如圖,過點分別作直線,設直線交橢圓于另一點交橢圓于另一點,分別過作橢圓的兩條切線,且兩條切線交于點,分別過作橢圓的兩條切線,且兩條切線交于點.證明:點在直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直三棱柱中,,分別是 的中點,,為棱上的點.

(1)證明:;

(2)是否存在一點,使得平面與平面所成銳二面角的余弦值為?若存在,說明點的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當時,求零點處的切線方程;

(Ⅱ)若有兩個零點,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且經(jīng)過點

1)求橢圓的方程;

2)若不過坐標原點的直線與橢圓相交于、兩點,且滿足,求面積最大時直線的方程.

查看答案和解析>>

同步練習冊答案