【題目】如圖,在四棱錐中,平面平面ABCD,底面ABCD是直角梯形,,,OAD的中點.

1)在線段PA上找一點E,使得平面PCD,并證明;

2)在(1)的條件下,若,求平面OBE與平面POC所成的銳二面角的余弦值.

【答案】(1)E是線段PA的中點,證明詳見解析;(2).

【解析】

1是線段的中點;連接,,,證明平面平面后即可得證;

2)建立空間直角坐標系,表示出、、、、的坐標后,分別求出平面的一個法向量與平面的一個法向量,利用即可得解.

1是線段的中點,

證明:連接,,

的中點,,

平面平面,

平面,

底面是直角梯形,,

平面,平面,

平面

平面,平面,,

平面平面,

平面,

平面.

2平面平面,

,平面,且,

為原點,如圖建立空間直角坐標系,

,,,,,

,

是平面的一個法向量,

,得,取,

又易知是平面的一個法向量,

設平面與平面所成的銳二面角為

,

即平面與平面所成的銳二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調區(qū)間;

2)若函數(shù)取得極小值,若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有下列四個命題:(1)一定存在直線,使函數(shù)的圖像與函數(shù)的圖像關于直線對稱;(2)不等式:的解集為;(3)已知數(shù)列的前項和為,,則數(shù)列一定是等比數(shù)列;(4)過拋物線上的任意一點的切線方程一定可以表示為.則正確命題的序號為_________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,是等邊三角形,是等腰直角三角形, ,平面平面,平面.

(1) 求證:;

(2) 若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某銷售公司在當?shù)?/span>兩家超市各有一個銷售點,每日從同一家食品廠一次性購進一種食品,每件200元,統(tǒng)一零售價每件300元,兩家超市之間調配食品不計費用,若進貨不足食品廠以每件250元補貨,若銷售有剩余食品廠以每件150回收.現(xiàn)需決策每日購進食品數(shù)量,為此搜集并整理了、兩家超市往年同期各50天的該食品銷售記錄,得到如下數(shù)據(jù):

銷售件數(shù)

8

9

10

11

頻數(shù)

20

40

20

20

以這些數(shù)據(jù)的頻數(shù)代替兩家超市的食品銷售件數(shù)的概率,記表示這兩家超市每日共銷售食品件數(shù),表示銷售公司每日共需購進食品的件數(shù).

(1)求的分布列;

(2)以銷售食品利潤的期望為決策依據(jù),在之中選其一,應選哪個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由于受到網絡電商的沖擊,某品牌的洗衣機在線下的銷售受到影響,承受了一定的經濟損失,現(xiàn)將地區(qū)200家實體店該品牌洗衣機的月經濟損失統(tǒng)計如圖所示.

1)求的值;

2)求地區(qū)200家實體店該品牌洗衣機的月經濟損失的眾數(shù)以及中位數(shù);

3)不經過計算,直接給出地區(qū)200家實體店經濟損失的平均數(shù)6000的大小關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1),求函數(shù)的單調區(qū)間;

(2)恒成立,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司欲對員工飲食習慣進行一次調查,從某科室的100人中的飲食結構調查結果統(tǒng)計如下表.

主食蔬菜

主食肉類

總計

不超過45

15

40

45歲以上

20

總計

1)完成列聯(lián)表,并判斷能否有99%的把握認為員工的飲食習慣與年齡有關?

2)在45歲以上員工中按照飲食習慣進行分層抽樣抽出一個容量為6的樣本,從這6個人中隨機抽取3個人,求這3個人都主食蔬菜的概率.

附:

0.050

0.010

0.001

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設命題p:實數(shù)x滿足x24ax+3a20a0),命題q:實數(shù)x滿足x25x+60

1)若a1,且pq為真命題,求實數(shù)x的取值范圍;

2)若pq的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案