【題目】已知函數(shù)且).
(1)求的定義域;
(2)討論函數(shù)的單調(diào)性.
【答案】(1)當時, 定義域是;當時,定義域是;(2)當時,在(0,+∞)上是增函數(shù),當時,在(-∞,0)上也是增函數(shù).
【解析】試題分析:(1)要使函數(shù)有意義,則有,討論兩種情況,分別根據(jù)指數(shù)函數(shù)的性質(zhì)求解不等式即可;(2)當時,是增函數(shù),是增函數(shù);當時,.是減函數(shù),是減函數(shù),進而可得函數(shù)的單調(diào)性.
試題解析:(1)令,即,
當時,的解集是(0,+∞);
當時,的解集是(-∞,0);
所以,當時,的定義域是(0,+∞);
當時,的定義域是(-∞,0).
(2)當時,是增函數(shù),是增函數(shù),從而函數(shù)在(0,+∞)上是增函數(shù),
同理可證:當時,函數(shù)在(-∞,0)上也是增函數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】四棱柱中,底面為正方形, 平面為棱的中點, 為棱的中點, 為棱的中點.
(1)證明:平面平面;
(2)若,棱上有一點,且,使得二面角的余弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知圓的方程為,點的坐標為.
(1)求過點且與圓相切的直線方程;
(2)過點任作一條直線與圓交于不同兩點,,且圓交軸正半軸于點,求證:直線與的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f (x)在R上可導(dǎo),其導(dǎo)函數(shù)為f ′(x),且函數(shù)f (x)在x=-2處取得極大值,則函數(shù)y=f ′(x)的圖象可能是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為自然對數(shù)的底數(shù)).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若,且方程在內(nèi)有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)是由一平面內(nèi)的個向量組成的集合.若,且的模不小于中除外的所有向量和的模.則稱是的極大向量.有下列命題:
①若中每個向量的方向都相同,則中必存在一個極大向量;
②給定平面內(nèi)兩個不共線向量,在該平面內(nèi)總存在唯一的平面向量,使得中的每個元素都是極大向量;
③若中的每個元素都是極大向量,且中無公共元素,則中的每一個元素也都是極大向量.
其中真命題的序號是_______________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,過點的直線與拋物線交于,兩點,線段的垂直平分線交軸于點,若,則點的橫坐標為( )
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(12分)
一只藥用昆蟲的產(chǎn)卵數(shù)y(單位:個)與一定范圍內(nèi)的溫度(單位:℃)有關(guān),現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表所示.
經(jīng)計算得
,線性回歸模型的殘差平方和
,其中分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),
(1)若用線性回歸模型,求的回歸方程(結(jié)果精確到0.1).
(2)若用非線性回歸模型預(yù)測當溫度為35℃時,該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).
附:一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com