(本小題滿分13分)
已知⊙C經(jīng)過點兩點,且圓心C在直線上.
(1)求⊙C的方程;
(2)若直線與⊙C總有公共點,求實數(shù)的取值范圍.

(1)(2)

解析試題分析:(1)解法1:設(shè)圓的方程為,
,…………5分
所以⊙C方程為.………6分
解法2:由于AB的中點為,,
則線段AB的垂直平分線方程為
而圓心C必為直線與直線的交點,
解得,即圓心,又半徑為,
故⊙C的方程為.
(2)解法1:因為直線與⊙C總有公共點,
則圓心到直線的距離不超過圓的半徑,即,………11分
將其變形得,
解得.………………13分
解法2:由,
因為直線與⊙C總有公共點,則,
解得.
注:如有學生按這里提供的解法2答題,請酌情記分。
考點:本題考查了圓的方程及直線與圓的位置關(guān)系
點評:從直線和圓的位置關(guān)系的角度考查圓的方程是高考中常見的形式。研究直線和圓的位置關(guān)系的相關(guān)問題時通常采用“幾何法”即抓住圓心到直線的的距離與半徑的關(guān)系.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知動點M到定點與到定點的距離之比為3.
(Ⅰ)求動點M的軌跡C的方程,并指明曲線C的軌跡;
(Ⅱ)設(shè)直線,若曲線C上恰有兩個點到直線的距離為1,
求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C與兩坐標軸都相切,圓心C到直線的距離等于.
(1)求圓C的方程.
(2)若直線與圓C相切,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知⊙和點.

(Ⅰ)過點向⊙引切線,求直線的方程;
(Ⅱ)求以點為圓心,且被直線截得的弦長為4的⊙的方程;
(Ⅲ)設(shè)為(Ⅱ)中⊙上任一點,過點向⊙引切線,切點為. 試探究:平面內(nèi)是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應的定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分)已知:以點C (t, )(t∈R , t ≠ 0)為圓心的圓與軸交于點O, A,
與y軸交于點O, B,其中O為原點.
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y = –2x+4與圓C交于點M, N,若,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分)
在極坐標系中,已知兩點O(0,0),B(2).

(1)求以OB為直徑的圓C的極坐標方程,然后化成直角方程;
(2)以極點O為坐標原點,極軸為軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為t為參數(shù)).若直線l與圓C相交于M,N兩點,圓C的圓心為C,求DMNC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)已知圓

(1)直線與圓相交于兩點,求
(2)如圖,設(shè)是圓上的兩個動點,點關(guān)于原點的對稱點為,點關(guān)于軸的對稱點為,如果直線、軸分別交于,問是否為定值?若是求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知直線l:y=x,圓C1的圓心為(3,0),且經(jīng)過(4,1)點.
(1)求圓C1的方程;
(2)若圓C2與圓C1關(guān)于直線l對稱,點A、B分別為圓C1、C2上任意一點,求|AB|的最小值;
(3)已知直線l上一點M在第一象限,兩質(zhì)點P、Q同時從原點出發(fā),點P以每秒1個單位的速度沿x軸正方向運動,點Q以每秒個單位沿射線OM方向運動,設(shè)運動時間為t秒.問:當t為何值時直線PQ與圓C1相切?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)
已知直線,圓.
(Ⅰ)證明:對任意,直線與圓恒有兩個公共點.
(Ⅱ)過圓心于點,當變化時,求點的軌跡的方程.
(Ⅲ)直線與點的軌跡交于點,與圓交于點,是否存在的值,使得?若存在,試求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案