已知圓C:(x+)2+y2=16,點(diǎn)A(,0),Q是圓上一動(dòng)點(diǎn),AQ的垂直平分線交CQ于點(diǎn)M,設(shè)點(diǎn)M的軌跡為E.

(Ⅰ)求E的方程;

(Ⅱ)設(shè)P為直線x=4上不同于點(diǎn)(4,0)的任意一點(diǎn),D,F(xiàn)分別為曲線E與x軸的左,右兩交點(diǎn),若直線DP與曲線E相交于異于D的點(diǎn)N,證明ΔNPF為鈍角三角形.

答案:
解析:

  解:(Ⅰ)由題意得

  ∴軌跡E是以A,C為焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓;2分

  既軌跡E的方程為;4分

  (Ⅱ)由(Ⅰ)知D(-2,0),F(xiàn)(2,0),設(shè)P(4,t)(t0),N(xN,yN)

  則直線DP的方程為;6分

  由

  ∵直線DP與橢圓相交于異于D的點(diǎn)N

  ∴

  由;8分

  ∴=(2,t)

  ∴·;10分

  又N,F(xiàn),P三點(diǎn)不共線,∴為鈍角∴為鈍角三角形;12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x+1)2+(y-
3
)2=1
,則圓心C的極坐標(biāo)為
(2, 
3
)
(2, 
3
)
 (ρ>0,0≤θ<2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x+
3
)2+y2=16
,點(diǎn)A(
3
,0)
,Q是圓上一動(dòng)點(diǎn),AQ的垂直平分線交CQ于點(diǎn)M,設(shè)點(diǎn)M的軌跡為E.
(Ⅰ)求E的方程;
(Ⅱ)設(shè)P為直線x=4上不同于點(diǎn)(4,0)的任意一點(diǎn),D,F(xiàn)分別為曲線E與x軸的左,右兩交點(diǎn),若直線DP與曲線E相交于異于D的點(diǎn)N,證明△NPF為鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•大連二模)已知圓C:(x-2p
)
2
 
+(y-2p
)
2
 
=
r
2
 
(r>0,p>0)
過(guò)拋物線
y
2
 
=2px
的焦點(diǎn),則拋物線y2=2px的準(zhǔn)線與圓C的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-a)2+(y-2)2=4(a>0)及直線l:x-y+3=0.當(dāng)直線l被C截得的弦長(zhǎng)為時(shí),則a=(    )

A.                 B.                C.             D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:(x-1)2+y2=9內(nèi)有一點(diǎn)P(2,2),過(guò)點(diǎn)P作直線l交圓C于A、B兩點(diǎn).

(1)當(dāng)l經(jīng)過(guò)圓心C時(shí),求直線l的方程;

(2)當(dāng)弦AB被點(diǎn)P平分時(shí),寫出直線l的方程;

(3)當(dāng)直線l的傾斜角為45°時(shí),求弦AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案