已知銳角△ABC的三內(nèi)角A、B、C的對邊分別是a、b、c, 且(b2+c2-a2)tanA=bc.

(1)求角A的大。

(2)求sin(A+10°)·[1-tan(A-10°)]的值.

 

【答案】

(1)  (2)

【解析】

試題分析:(1)由已知及余弦定理,

, 則, 故A=             (5分)

(2)

      (12分)

考點(diǎn):解三角形及三角函數(shù)式的化簡

點(diǎn)評(píng):解三角形的題目主要依據(jù)正余弦定理實(shí)現(xiàn)邊與角的互相轉(zhuǎn)化,第二問中三角函數(shù)的化簡主要利用的是誘導(dǎo)公式,倍角公式,和差角公式等基本公式

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角△ABC的三內(nèi)角A、B、C的對邊分別是a,b,c,且(b2+c2-a2)tanA=
3
bc

(1)求角A的大。
(2)求sin(A+10°)•[1-
3
tan(A-10°)]
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角△ABC的三個(gè)內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足(a2+c2-b2)tanB=
3
ac,則角B為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx-
π
6
),(A>0,ω>0,x∈R)
,且f(x)的最小正周期是2π.
(1)求ω及f(0)的值;
(2)已知銳角△ABC的三個(gè)內(nèi)角分別為A、B、C,若f(A+
3
)=
8
5
,f(B+
6
)=-
30
17
,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞一模)向量
a
=(
1
2
,
1
2
sinx+
3
2
cosx)
b
=(1,y)
,已知
a
b
,且有函數(shù)y=f(x).
(1)求函數(shù)y=f(x)的周期;
(2)已知銳角△ABC的三個(gè)內(nèi)角分別為A,B,C,若有f(A-
π
3
)=
3
,邊BC=
7
,sinB=
21
7
,求AC的長及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•崇明縣二模)已知向量
a
=(sinx,cosx),
b
=(1,
3
),設(shè)函數(shù)f(x)=
a
b

(1)若x∈[0,π],求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知銳角△ABC的三內(nèi)角A、B、C所對的邊是a、b、c,若有f(A-
π
3
)=
3
,a=
7
,sinB=
21
7
,求c邊的長度.

查看答案和解析>>

同步練習(xí)冊答案