選做題:(從所給的A,B兩題中任選一題作答,若做兩題,則按第一題A給分,共5分)
A.在極坐標(biāo)系(ρ,θ)(0≤θ≤2π)中,曲線ρ=2sinθ與ρcosθ=-1的交點(diǎn)坐標(biāo)為________.
B.已知x,y,z∈R,有下列不等式:
(1)x2+y2+z2+3≥2(x+y+z);(2)數(shù)學(xué)公式;
(3)|x+y|≤|x-2|+|y+2|;(4)x2+y2+z2≥xy+yz+zx.
其中一定成立的不等式的序號(hào)是________.

解:A 曲線ρ=2sinθ 即 ρ2=2ρsinθ,化為直角坐標(biāo)方程為 x2+(y-1)2=1.
ρcosθ=-1即x=-1,把x=-1代入x2+(y-1)2=1可得交點(diǎn)坐標(biāo)為(-1,1),
該點(diǎn)到原點(diǎn)的距離為,該點(diǎn)在第二象限的平分線上,
故極角為,故交點(diǎn)的極坐標(biāo)為,
故答案為
B∵x2+y2+z2+3-2(x+y+z)=(x-1)2+(y-1)2+(z-1)2≥0,∴x2+y2+z2+3≥2(x+y+z)成立.
故(1)正確.
當(dāng) x和y 為負(fù)數(shù)時(shí),(2)顯然不成立.
∵|x+y|=|x-2+y+2|≤|x-2|+|y+2|,故(3)正確.
∵x2+y2+z2-(xy+yz+zx )=++≥0,故(4)正確.
分析:A 把極坐標(biāo)方程化為直角坐標(biāo)方程求出交點(diǎn)的坐標(biāo),再把交點(diǎn)的坐標(biāo)化為極坐標(biāo).
B 利用作差法及絕對(duì)值不等式的性質(zhì)判斷兩個(gè)式子的大小關(guān)系.
點(diǎn)評(píng):本題考查極坐標(biāo)與直角坐標(biāo)的互化,絕對(duì)值不等式的性質(zhì),變形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選做題:(從所給的A,B兩題中任選一題作答,若做兩題,則按第一題A給分,共5分)
A.在極坐標(biāo)系(ρ,θ)(0≤θ≤2π)中,曲線ρ=2sinθ與ρcosθ=-1的交點(diǎn)坐標(biāo)為
 

B.已知x,y,z∈R,有下列不等式:
(1)x2+y2+z2+3≥2(x+y+z);(2)
x+y
2
xy
;
(3)|x+y|≤|x-2|+|y+2|;(4)x2+y2+z2≥xy+yz+zx.
其中一定成立的不等式的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)選做題(這里給出了3道選做題,考生只能從中選做一題,多答時(shí)按順序只評(píng)第1位置題)
A.在極坐標(biāo)中,圓ρ=2cosθ的圓心的極坐標(biāo)是
 
,它與方程θ=
π
4
(ρ>0)
所表示的圖形的交點(diǎn)的極坐標(biāo)
 

B.如圖,AB為⊙O的直徑,AC切⊙O于點(diǎn)A,且AC=2
2
cm
,過C的割線CMN交AB的延長(zhǎng)線于點(diǎn)D,CM=MN=ND,則AD的長(zhǎng)等于
 
cm.
C.若關(guān)于x的不等式|x-2|+|x-3|<a的解集為∅,則α實(shí)數(shù)的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

選做題(這里給出了3道選做題,考生只能從中選做一題,多答時(shí)按順序只評(píng)第1位置題)
A.在極坐標(biāo)中,圓ρ=2cosθ的圓心的極坐標(biāo)是________,它與方程數(shù)學(xué)公式所表示的圖形的交點(diǎn)的極坐標(biāo)
是________.
B.如圖,AB為⊙O的直徑,AC切⊙O于點(diǎn)A,且數(shù)學(xué)公式,過C的割線CMN交AB的延長(zhǎng)線于點(diǎn)D,CM=MN=ND,則AD的長(zhǎng)等于________cm.
C.若關(guān)于x的不等式|x-2|+|x-3|<a的解集為∅,則α實(shí)數(shù)的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省吉安市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

選做題:(從所給的A,B兩題中任選一題作答,若做兩題,則按第一題A給分,共5分)
A.在極坐標(biāo)系(ρ,θ)(0≤θ≤2π)中,曲線ρ=2sinθ與ρcosθ=-1的交點(diǎn)坐標(biāo)為   
B.已知x,y,z∈R,有下列不等式:
(1)x2+y2+z2+3≥2(x+y+z);(2);
(3)|x+y|≤|x-2|+|y+2|;(4)x2+y2+z2≥xy+yz+zx.
其中一定成立的不等式的序號(hào)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案