【題目】為了解某冷飲店的經(jīng)營狀況,隨機記錄了該店月的月營業(yè)額(單位:萬元)與月份的數(shù)據(jù),如下表:

(1)求關于的回歸直線方程;

(2)若在這些樣本點中任取兩點,求恰有一點在回歸直線上的概率.

附:回歸直線方程中,

.

【答案】(1)(2)

【解析】分析:(1)根據(jù)題意計算平均數(shù)與回歸系數(shù),寫出回歸方程;

詳解:(2)用,分別表示所取的兩個樣本點所在的月份,則該試驗的基本事件用列舉法可得包含個基本事件,設“恰有一點在回歸直線上”為事件,則包含個基本事件,用古典概型直接求概率即可。

(1),,,所以,

于是,所以回歸有線方程為:.

(2)用分別表示所取的兩個樣本點所在的月份,則該試驗的基本事件可以表示為有序實數(shù)對,于是該試驗的基本事件空間為:

,共包含個基本事件,

設“恰有一點在回歸直線上”為事件,則中,共包含個基本事件,

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知圓圓心為,過點且斜率為的直線與圓相交于不同的兩點、

)求的取值范圍;

)是否存在常數(shù),使得向量共線?如果存在,求值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC所在的平面內(nèi),點P0、P滿足 = , ,且對于任意實數(shù)λ,恒有 ,則(
A.∠ABC=90°
B.∠BAC=90°
C.AC=BC
D.AB=AC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線l1過點A(0,1),l2過點B(5,0),如果l1∥l2,且l1與l2的距離為5,求直線l1與l2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓中心在坐標原點,焦點在坐標軸上,且經(jīng)過三點.

(1)求橢圓的方程;

(2)在直線上任取一點,連接,分別與橢圓交于兩點,判斷直線是否過定點?若是,求出該定點.若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為的正方形,側面,且,若、分別為、的中點.

(1)求證:∥平面;

(2)求證:平面平面.

(3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ax2+bx+c(a≠0),對任意實數(shù)t都有f(2+t)=f(2﹣t)成立,則函數(shù)值f(﹣1),f(1),f(2),f(5)中,最小的一個不可能是(
A.f(﹣1)
B.f(1)
C.f(2)
D.f(5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩直線l1axby40,l2(a1)xyb0.求分別滿足下列條件的a,b的值.

(1)直線l1過點(3,-1),并且直線l1l2垂直;

(2)直線l1與直線l2平行,并且坐標原點到l1l2的距離相等.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從裝有 2個紅球和 2個白球的口袋中任取 2個球,則下列每對事件中,互斥事件的對數(shù)是( )對

(1)“至少有 1個白球”與“都是白球” (2)“至少有 1個白球”與“至少有 1個紅球”

(3)“至少有 1個白球”與“恰有 2個白球” (4)“至少有 1個白球”與“都是紅球”

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步練習冊答案