某工廠生產(chǎn)某種產(chǎn)品,每日的成本C(單位:元)與日產(chǎn)量x(單位:噸)滿足函數(shù)關(guān)系式C=10000+20x,每日的銷售額R(單位:元)與日產(chǎn)量x滿足函數(shù)關(guān)系式R=
已知每日的利潤(rùn)y=R-C,且當(dāng)x=30時(shí),y=-100.
(1)求a的值.
(2)求當(dāng)日產(chǎn)量為多少噸時(shí),每日的利潤(rùn)可以達(dá)到最大,并求出最大值.

(1) a=3    (2) 當(dāng)日產(chǎn)量為90噸時(shí),每日的利潤(rùn)可以達(dá)到最大值14300元.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)滿足:
①對(duì)任意的,,當(dāng)時(shí),有成立;
②對(duì)恒成立.求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線yx3+1,求過點(diǎn)P(1,2)的曲線的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=ax2-ln x,x∈(0,e],其中e是自然對(duì)數(shù)的底數(shù),a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(2)是否存在實(shí)數(shù)a,使f(x)的最小值是3?若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x3-x2+x+b,其中a,b∈R.
(1)若曲線y=f(x)在點(diǎn)P(2,f(2))處的切線方程為y=5x-4,求函數(shù)f(x)的解析式.
(2)當(dāng)a>0時(shí),討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知 (其中是自然對(duì)數(shù)的底)
(1) 若處取得極值,求的值;
(2) 若存在極值,求a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直線m:y=kx+9,且f′(-1)=0.
(1)求a的值.
(2)是否存在k的值,使直線m既是曲線y=f(x)的切線,又是曲線y=g(x)的切線?如果存在,求出k的值;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某村莊擬修建一個(gè)無(wú)蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12 000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時(shí)該蓄水池的體積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=aln x(a為常數(shù)).
(1)若曲線yf(x)在點(diǎn)(1,f(1))處的切線與直線x+2y-5=0垂直,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)x≥1時(shí),f(x)≤2x-3恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案