【題目】設(shè)函數(shù)f(x)=x2﹣ax+a+3,g(x)=ax﹣2a.
(1)若函數(shù)h(x)=f(x)﹣g(x)在[﹣2,0]上有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)若存在x0∈R,使得f(x0)≤0與g(x0)≤0同時(shí)成立,求實(shí)數(shù)a的最小值.
【答案】
(1)
解:由已知,h(x)=f(x)﹣g(x)=x2﹣2ax+3a+3=0在[﹣2,0]上有兩個(gè)不同的實(shí)數(shù)解,
所以 ,
即 ,
解得 ,
(2)
解:由已知, ,
(1)+(2)得 ,得a≥3,
再由(2)得x0≤2,由(1)得 ,得x0>1,
于是,問(wèn)題等價(jià)于:a≥3,且存在x0∈(1,2]滿足 ,
令t=x0﹣1∈(0,1], ,
因?yàn)? 在(0,1]上單調(diào)遞減,
所以φ(t)≥φ(1)=7,即a≥7,
故實(shí)數(shù)a的最小值為7.
【解析】(1)由h(x)在區(qū)間內(nèi)的兩個(gè)零點(diǎn),結(jié)合圖形,得到需要滿足的條件.(2)由f(x0)≤0與g(x0)≤0同時(shí)成立,得到得a≥3,可將問(wèn)題轉(zhuǎn)化為最值問(wèn)題,由單調(diào)性得到最值,即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀如圖所示的程序框圖,當(dāng)輸出的結(jié)果S為0時(shí),判斷框中應(yīng)填( )
A.n≤4
B.n≤5
C.n≤7
D.n≤8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐的底面為直角梯形, , ,且, .
(1)求證:平面平面;
(2)設(shè),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】精準(zhǔn)扶貧是鞏固溫飽成果、加快脫貧致富、實(shí)現(xiàn)中華民族偉大“中國(guó)夢(mèng)”的重要保障.某地政府在對(duì)某鄉(xiāng)鎮(zhèn)企業(yè)實(shí)施精準(zhǔn)扶貧的工作中,準(zhǔn)備投入資金將當(dāng)?shù)剞r(nóng)產(chǎn)品進(jìn)行二次加工后進(jìn)行推廣促銷,預(yù)計(jì)該批產(chǎn)品銷售量萬(wàn)件(生產(chǎn)量與銷售量相等)與推廣促銷費(fèi)萬(wàn)元之間的函數(shù)關(guān)系為(其中推廣促銷費(fèi)不能超過(guò)5千元).已知加工此農(nóng)產(chǎn)品還要投入成本萬(wàn)元(不包括推廣促銷費(fèi)用),若加工后的每件成品的銷售價(jià)格定為元/件.
(1)試將該批產(chǎn)品的利潤(rùn)萬(wàn)元表示為推廣促銷費(fèi)萬(wàn)元的函數(shù);(利潤(rùn)=銷售額-成本-推廣促銷費(fèi))
(2)當(dāng)推廣促銷費(fèi)投入多少萬(wàn)元時(shí),此批產(chǎn)品的利潤(rùn)最大?最大利潤(rùn)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)圓的圓心為,直線過(guò)點(diǎn)且與軸不重合,交圓于兩點(diǎn),過(guò)作的平行線交于點(diǎn).
(1)證明:為定值,并寫出點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,直線交于兩點(diǎn),為坐標(biāo)原點(diǎn),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若學(xué)生一天學(xué)習(xí)數(shù)學(xué)超過(guò)兩個(gè)小時(shí)的概率為(每天是相互獨(dú)立沒(méi)有影響的),一周內(nèi)至少有四天每天學(xué)習(xí)數(shù)學(xué)超過(guò)兩個(gè)小時(shí),就說(shuō)該生本周數(shù)學(xué)學(xué)習(xí)是投入的.
(Ⅰ)①設(shè)學(xué)生本周一天學(xué)習(xí)數(shù)學(xué)超過(guò)兩個(gè)小時(shí)的天數(shù)為求的分布列與數(shù)學(xué)期望
②求學(xué)生本周數(shù)學(xué)學(xué)習(xí)投入的概率.
(Ⅱ)為了研究學(xué)生學(xué)習(xí)數(shù)學(xué)的投入程度和本周數(shù)學(xué)周練成績(jī)的關(guān)系,隨機(jī)在年級(jí)中抽取了名學(xué)生進(jìn)行調(diào)查,所得數(shù)據(jù)如下表所示:
成績(jī)理想 | 成績(jī)不太理想 | 合計(jì) | |
數(shù)學(xué)學(xué)習(xí)投入 | 20 | 10 | 30 |
數(shù)學(xué)學(xué)習(xí)不太投入 | 10 | 15 | 25 |
合計(jì) | 30 | 25 | 55 |
根據(jù)上述數(shù)據(jù)能否有的把握認(rèn)為“學(xué)生學(xué)習(xí)數(shù)學(xué)的投入程度和本周數(shù)學(xué)成績(jī)兩事件有關(guān)”?
附:
10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)對(duì)一切實(shí)數(shù)都有 成立,且.
(1)求的值;
(2)求的解析式;
(3)已知,設(shè):當(dāng)時(shí),不等式 恒成立;Q:當(dāng)時(shí),是單調(diào)函數(shù)。如果滿足成立的的集合記為,滿足Q成立的的集合記為,求A∩(CRB)(為全集).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD的底面ABCD為菱形,且∠ABC=60°,
AB=PC=2,PA=PB= .
(1)求證:平面PAB⊥平面ABCD;
(2)設(shè)H是PB上的動(dòng)點(diǎn),求CH與平面PAB所成最大角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列中, , ,其前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足,其前項(xiàng)和為為,求證: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com