如圖,在長方形中,的中點,為線段(端點除外)上一動點,現(xiàn)將沿折起,使平面平面.在平面內(nèi)過點為垂足,設(shè),則的取值范圍是________

試題分析:分析:如圖,過,垂足為,連接,

∵平面平面,,,,
平面,∴.因為,∴平面,.
容易得到,當接近點時,接近的中點,當接近點時,接近的四等分點,
∴t的取值范圍是.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且底面ABCD,,E是PA的中點.

(1)求證:平面平面EBD;
(2)若PA=AB=2,求三棱錐P-EBD的高.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在空間四邊形中,分別是上的點,分別是上的點,且,求證:三條直線相交于同一點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在棱長為的正方體中,點是棱的中點,點在棱上,且滿足.

(1)求證:;
(2)在棱上確定一點,使、、四點共面,并求此時的長;
(3)求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P­ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DCAB,∠BAD=90°,且AB=2AD=2DC=2PD=4,EPA的中點.
 
(1)求證:DE∥平面PBC
(2)求證:DE⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)如圖,平面平面,四邊形為矩形,△為等邊三角形.的中點,

(1)求證:;
(2)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,下列命題中正確的是(  ).
A.若αβ,m?α,n?β,則mn
B.若αβ,m?αn?β,,則mn
C.若mn,m?α,n?β,則αβ
D.若mα,mnnβ,則αβ

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知集合={直線},={平面},,若,有四個命題①其中所有正確命題的序號是( )
A.①②③B.②③④C.②④D.④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知l,m,n是三條不同的直線,α,β是不同的平面,則下列條件中能推出α⊥β的是(     )
A.lα,mβ,且l⊥m
B.lα,mβ,nβ,且l⊥m,l⊥n
C.mα,nβ,m//n,且l⊥m
D.lα,l//m,且m⊥β

查看答案和解析>>

同步練習冊答案