已知集合A={x|
x-1
x+1
<0},B={x||x-1|<2}
,則∁BA=
 
考點:補集及其運算
專題:集合
分析:先求解化簡集合A,B,然后求∁BA.
解答: 解:
x-1
x+1
<0即為(x-1)(x+1)<0,解得-1<x<1,則集合A=(-1,1),
|x-1|<2,即-2<x-1<2,即-1<x<3,則集合B=(-1,3),
則∁BA=[1,3).
點評:本題考查集合補集運算,利用補集的定義求解,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知P是橢圓
x2
4
+y2=1上的一點,F(xiàn)1、F2為橢圓的左、右焦點.
(1)當∠F1PF2=60°時,求△PF1F2的面積;
(2)當∠F1PF2為鈍角時,求點P的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=
3
cos2ωx+sinωxcosωx+a(其中ω>0,a∈R),且f(x)的圖象在y軸右側(cè)的第一個最高點的橫坐標為
π
12

(1)求ω的值;   
(2)如果f(x)在區(qū)間[-
π
6
,
12
]上的最小值為
3
,求a的值;
(3)證明:直線5x-2y+c=0與函數(shù)y=f(x)的圖象不相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+bx+clnx(a、b、c∈R).
(1)當a=-1,b=2,c=0時,求曲線y=f(x)在點(2,0)處的切線方程;
(2)當a=1,b=0,c=-e時,求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,已知a10=30,a20=50,
(1)求通項an
(2)若Sn=80,求n
(3)設(shè)數(shù)列{bn}滿足log2bn=an-12,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a1+a2+a3=18,a4+a5+a6=15,則數(shù)列{an}的前12項和S12等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列推理過程,錯誤的是
 

①l∥α,A∈l⇒A∉α;
②A∈l,A∈α,B∈l⇒B∈α;
③A∈α,A∈β,B∈α,B∈β⇒α∩β=AB;
④A,B,C∈α,A,B,C∈β,并且A,B,C不共線⇒α=β.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=e|lnx|-|x-
1
x
|,則函數(shù)y=f(x)的大致圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線ax+y+1=0與直線x+ay+1=0垂直,則a=
 

查看答案和解析>>

同步練習冊答案