【題目】數(shù)列{an}滿足an+1=an(1﹣an+1),a1=1,數(shù)列{bn}滿足:bn=anan+1 , 則數(shù)列{bn}的前10項和S10=

【答案】
【解析】解:由an+1=an(1﹣an+1)得: =1,所以得到數(shù)列{ }是以1為首項,1為公差的等差數(shù)列,
=1+(n﹣1)=n,所以an= ;
而bn=anan+1= = ,則s10=b1+b2+…+b10=1﹣ + +…+ =1﹣ =
所以答案是
【考點精析】掌握數(shù)列的前n項和和數(shù)列的通項公式是解答本題的根本,需要知道數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三角形ABC中,內(nèi)角A,B,C所對邊a,b,c成公比小于1的等比數(shù)列,且sinB+sin(A﹣C)=2sin2C.
(1)求內(nèi)角B的余弦值;
(2)若b= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

(1)求分?jǐn)?shù)在[120,130)內(nèi)的頻率;

(2)估計本次考試的中位數(shù);

(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有5個大小相同的球,其中有2個白球,2個黑球,1個紅球,現(xiàn)從袋中每次取出1球,去除后不放回,直到取到有兩種不同顏色的球時即終止,用表示終止取球時所需的取球次數(shù),則隨機(jī)變量的數(shù)字期望是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,是正方形所在平面外一點,在面上的正投影,

,.有以下四個命題:

(1)⊥面;(2);

(3)以作為鄰邊的平行四邊形面積是8;

(4)恰在上.

其中正確命題的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=3x+λ3x(λ∈R).
(1)若f(x)為奇函數(shù),求λ的值和此時不等式f(x)>1的解集;
(2)若不等式f(x)≤6對x∈[0,2]恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的兩個焦點坐標(biāo)分別為F1(-,0)F2(,0),且橢圓過點

(1)求橢圓方程;

(2)過點作不與y軸垂直的直線l交該橢圓于M,N兩點,A為橢圓的左頂點,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面為矩形,平面,點在線段上,平面.

(Ⅰ)證明:平面

(Ⅱ)若,求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a32,前3項和S3.

(1){an}的通項公式;

(2)設(shè)等比數(shù)列{bn}滿足b1a1,b4a15,求{bn}的前n項和Tn.

【答案】1an.2Tn2n1.

【解析】試題分析:(1)根據(jù)等差數(shù)列的基本量運算解出,代入公式算出等差數(shù)列的通項公式;(2)計算出等比數(shù)列的首項和公比,代入求和公式計算.

試題解析:

(1)設(shè){an}的公差為d,由已知得

解得a1=1,d

故{an}的通項公式an=1+,即an.

(2)由(1)得b1=1,b4a15=8.

設(shè){bn}的公比為q,則q3=8,從而q=2,

故{bn}的前n項和Tn=2n-1.

點睛:本題考查等差數(shù)列的基本量運算求通項公式以及等比數(shù)列的前n項和,屬于基礎(chǔ)題. 在數(shù)列求和中,最常見最基本的求和就是等差數(shù)列、等比數(shù)列中的求和,這時除了熟練掌握求和公式外還要熟記一些常見的求和結(jié)論,再就是分清數(shù)列的項數(shù),比如題中給出的,以免在套用公式時出錯.

型】解答
結(jié)束】
20

【題目】設(shè)不等式mx2-2x-m+1<0對于滿足|m|≤2的一切m的值都成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案