精英家教網(wǎng)已知三棱錐S-ABC的三條側(cè)棱SA、SB、SC兩兩互相垂直且長(zhǎng)度分別為a、b、c,設(shè)O為S在底面ABC上的射影.
求證:(1)O為△ABC的垂心;
(2)O在△ABC內(nèi);
(3)設(shè)SO=h,則
1
a2
+
1
b2
+
1
c2
=
1
h2
分析:(1)只需證明O在△ABC的三條高線上,即可證明O為△ABC的垂心;
(2)只需證明△ABC是銳角三角形,即可證明O在△ABC內(nèi);
(3)設(shè)SO=h,利用等面積法:SB•SC=BC•SD、SA•SD=AD•SO,推得關(guān)系化簡(jiǎn)為
1
a2
+
1
b2
+
1
c2
=
1
h2
解答:精英家教網(wǎng)證明:(1)∵SA⊥SB,SA⊥SC,
∴SA⊥平面SBC,BC?平面SBC.∴SA⊥BC.
而AD是SA在平面ABC上的射影,∴AD⊥BC.
同理可證AB⊥CF,AC⊥BE,故O為△ABC的垂心.
(2)證明△ABC為銳角三角形即可.不妨設(shè)a≥b≥c,
則底面三角形ABC中,AB=
a2+b2
為最大,從而∠ACB為最大角.
用余弦定理求得cos∠ACB=
2c2
2
b2+c2
a2+c2
>0,
∴∠ACB為銳角,△ABC為銳角三角形.故O在△ABC內(nèi).
(3)SB•SC=BC•SD,
故SD=
bc
b2+c2
1
SD2
=
1
b2
+
1
c2
,又SA•SD=AD•SO,
1
SO2
=
AD2
a2•SD2
=
a2+SD2
a2•SD2
=
1
a2
+
1
SD2
=
1
a2
+
1
b2
+
1
c2
=
1
h2
點(diǎn)評(píng):本題考查棱錐的結(jié)構(gòu)特征,余弦定理,考查空間想象能力,邏輯思維能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐S-ABC的各頂點(diǎn)都在一個(gè)半徑為r的球面上,球心O在AB上,SO⊥底面ABC,AC=
2
r
,則球的體積與三棱錐體積之比是( 。
A、πB、2πC、3πD、4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,△ABC是邊長(zhǎng)為1的正三角形,SC為球O的直徑,且SC=2;則此棱錐的體積為
2
6
2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐S-ABC的三條側(cè)棱兩兩垂直,且SA=2,SB=SC=4,若點(diǎn)P到S、A、B、C這四點(diǎn)的距離都是同一個(gè)值,則這個(gè)值是
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•蘭州一模)已知三棱錐S-ABC的所有頂點(diǎn)都在以O(shè)為球心的球面上,△ABC是邊長(zhǎng)為1的正三角形,SC為球O的直徑,若三棱錐S-ABC的體積為
2
6
,則球O的表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐S-ABC的四個(gè)頂點(diǎn)在以O(shè)為球心的同一球面上,且SA=SB=SC=AB,∠ACB=90°,則當(dāng)球的表面積為400π時(shí),點(diǎn)O到平面ABC的距離為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案