【題目】已知函數(shù).

(1)當(dāng)時,討論函數(shù)的單調(diào)性;

(2)若不等式對于任意成立,求正實(shí)數(shù)的取值范圍.

【答案】(1) 當(dāng)時,函數(shù)上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,函數(shù)上單調(diào)遞減,在上單調(diào)遞增. (2)

【解析】試題分析:(1)先求出函數(shù)f(x)的導(dǎo)數(shù),通過討論a的范圍,得到函數(shù)的單調(diào)性;(2)原題等價(jià)于對任意,有成立,設(shè),所以.

試題解析:

(1)函數(shù)的定義域?yàn)?/span>,

,

,則

當(dāng)時,單調(diào)遞增;

當(dāng)時,單調(diào)遞減,

,則

當(dāng)時,單調(diào)遞減;

當(dāng)時,單調(diào)遞增.

綜上所述,當(dāng)時,函數(shù)上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,函數(shù)上單調(diào)遞減,在上單調(diào)遞增.

(2)原題等價(jià)于對任意,有成立,

設(shè),所以

,

,得;令,得,

所以函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

中的較大值,

設(shè),

,

所以上單調(diào)遞增,故,所以

從而,

所以,即

設(shè),則,

所以上單調(diào)遞增,

,所以的解為,

因?yàn)?/span>,所以正實(shí)數(shù)的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)

已知函數(shù).

(1)當(dāng)時,判斷函數(shù)的單調(diào)性;

(2)若函數(shù)處取得極大值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了適應(yīng)市場需求對產(chǎn)品結(jié)構(gòu)做了重大調(diào)整,調(diào)整后初期利潤增長迅速,之后增長越來越慢,若要建立恰當(dāng)?shù)暮瘮?shù)模型來反映該公司調(diào)整后利潤與時間的關(guān)系,可選用

A.一次函數(shù)B.二次函數(shù)

C.指數(shù)型函數(shù)D.對數(shù)型函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國慶期間,某旅行社組團(tuán)去風(fēng)景區(qū)旅游,若旅行團(tuán)人數(shù)在30人或30人以下,每人需交費(fèi)用為900元;若旅行團(tuán)人數(shù)多于30,則給予優(yōu)惠:每多1,人均費(fèi)用減少10,直到達(dá)到規(guī)定人數(shù)75人為止.旅行社需支付各種費(fèi)用共計(jì)15000元.

1)寫出每人需交費(fèi)用關(guān)于人數(shù)的函數(shù);

2)旅行團(tuán)人數(shù)為多少時,旅行社可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問題,為了了解聲音強(qiáng)度(單位:分貝)與聲音能量(單位:)之間的關(guān)系,將測量得到的聲音強(qiáng)度和聲音能量,2,…,10)數(shù)據(jù)作了初步處理,得到如圖散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

表中,

(1)根據(jù)散點(diǎn)圖判斷,哪一個適宜作為聲音強(qiáng)度關(guān)于聲音能量的回歸方程類型?(給出判斷即可,不必說明理由)

(2)根據(jù)表中數(shù)據(jù),求聲音強(qiáng)度關(guān)于聲音能量的回歸方程;

(3)當(dāng)聲音強(qiáng)度大于60分貝時屬于噪音,會產(chǎn)生噪音污染,城市中某點(diǎn)共受到兩個聲源的影響,這兩個聲源的聲音能量分別是,且.已知點(diǎn)的聲音能量等于聲音能量之和.請根據(jù)(1)中的回歸方程,判斷點(diǎn)是否受到噪音污染的干擾,并說明理由.

附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓臺的上、下底面半徑分別為、,母線長,從圓臺母線的中點(diǎn)拉一條繩子繞圓臺側(cè)面轉(zhuǎn)到點(diǎn)在下底面,求:

1繩子的最短長度;

2在繩子最短時,上底圓周上的點(diǎn)到繩子的最短距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,是邊長為的正三角形,為棱的中點(diǎn).

()求證:平面;

()若平面平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在吸煙與患肺病是否相關(guān)的判斷中,有下面的說法:

1)從獨(dú)立性分析可知在犯錯誤的概率不超過0.05的前提下,認(rèn)為吸煙與患肺病有關(guān)系時,是指有的可能性使得推斷錯誤.

2)從獨(dú)立性分析可知在犯錯誤的概率不超過0.01的前提下,認(rèn)為吸煙與患肺病有關(guān)系時,若某人吸煙,則他有的可能患有肺;

3)若,則在犯錯誤的概率不超過0.01的前提下,認(rèn)為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺。

其中說法正確的是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2aln x(aR).

(1)f(x)x=2處取得極值,求a的值;

(2)f(x)的單調(diào)區(qū)間;

(3)求證:當(dāng)x>1時, x2+ln x<x3.

查看答案和解析>>

同步練習(xí)冊答案