【題目】已知函數(shù).
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)若不等式對于任意成立,求正實(shí)數(shù)的取值范圍.
【答案】(1) 當(dāng)時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,函數(shù)在上單調(diào)遞減,在和上單調(diào)遞增. (2)
【解析】試題分析:(1)先求出函數(shù)f(x)的導(dǎo)數(shù),通過討論a的范圍,得到函數(shù)的單調(diào)性;(2)原題等價(jià)于對任意,有成立,設(shè),所以.
試題解析:
(1)函數(shù)的定義域?yàn)?/span>,
,
若,則
當(dāng)或時,單調(diào)遞增;
當(dāng)時,單調(diào)遞減,
若,則
當(dāng)時,單調(diào)遞減;
當(dāng)時,單調(diào)遞增.
綜上所述,當(dāng)時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,函數(shù)在上單調(diào)遞減,在和上單調(diào)遞增.
(2)原題等價(jià)于對任意,有成立,
設(shè),所以,
,
令,得;令,得,
所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
為與中的較大值,
設(shè),
則,
所以在上單調(diào)遞增,故,所以,
從而,
所以,即,
設(shè),則,
所以在上單調(diào)遞增,
又,所以的解為,
因?yàn)?/span>,所以正實(shí)數(shù)的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)
已知函數(shù).
(1)當(dāng)時,判斷函數(shù)的單調(diào)性;
(2)若函數(shù)處取得極大值,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了適應(yīng)市場需求對產(chǎn)品結(jié)構(gòu)做了重大調(diào)整,調(diào)整后初期利潤增長迅速,之后增長越來越慢,若要建立恰當(dāng)?shù)暮瘮?shù)模型來反映該公司調(diào)整后利潤與時間的關(guān)系,可選用
A.一次函數(shù)B.二次函數(shù)
C.指數(shù)型函數(shù)D.對數(shù)型函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國慶期間,某旅行社組團(tuán)去風(fēng)景區(qū)旅游,若旅行團(tuán)人數(shù)在30人或30人以下,每人需交費(fèi)用為900元;若旅行團(tuán)人數(shù)多于30人,則給予優(yōu)惠:每多1人,人均費(fèi)用減少10元,直到達(dá)到規(guī)定人數(shù)75人為止.旅行社需支付各種費(fèi)用共計(jì)15000元.
(1)寫出每人需交費(fèi)用關(guān)于人數(shù)的函數(shù);
(2)旅行團(tuán)人數(shù)為多少時,旅行社可獲得最大利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問題,為了了解聲音強(qiáng)度(單位:分貝)與聲音能量(單位:)之間的關(guān)系,將測量得到的聲音強(qiáng)度和聲音能量(,2,…,10)數(shù)據(jù)作了初步處理,得到如圖散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
表中,.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個適宜作為聲音強(qiáng)度關(guān)于聲音能量的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)表中數(shù)據(jù),求聲音強(qiáng)度關(guān)于聲音能量的回歸方程;
(3)當(dāng)聲音強(qiáng)度大于60分貝時屬于噪音,會產(chǎn)生噪音污染,城市中某點(diǎn)共受到兩個聲源的影響,這兩個聲源的聲音能量分別是和,且.已知點(diǎn)的聲音能量等于聲音能量與之和.請根據(jù)(1)中的回歸方程,判斷點(diǎn)是否受到噪音污染的干擾,并說明理由.
附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓臺的上、下底面半徑分別為、,母線長,從圓臺母線的中點(diǎn)拉一條繩子繞圓臺側(cè)面轉(zhuǎn)到點(diǎn)(在下底面),求:
(1)繩子的最短長度;
(2)在繩子最短時,上底圓周上的點(diǎn)到繩子的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在吸煙與患肺病是否相關(guān)的判斷中,有下面的說法:
(1)從獨(dú)立性分析可知在犯錯誤的概率不超過0.05的前提下,認(rèn)為吸煙與患肺病有關(guān)系時,是指有的可能性使得推斷錯誤.
(2)從獨(dú)立性分析可知在犯錯誤的概率不超過0.01的前提下,認(rèn)為吸煙與患肺病有關(guān)系時,若某人吸煙,則他有的可能患有肺;
(3)若,則在犯錯誤的概率不超過0.01的前提下,認(rèn)為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺。
其中說法正確的是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-aln x(a∈R).
(1)若f(x)在x=2處取得極值,求a的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)求證:當(dāng)x>1時, x2+ln x<x3.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com