精英家教網 > 高中數學 > 題目詳情
如圖所示,拋物線關于x軸對稱,它的頂點在坐標原點,點P(1,2),A(x1,y1),B(x2,y2)均在拋物線上.當PA與PB的斜率存在且傾斜角互補時,直線AB的斜率為定值.這個定值為
-1
-1
分析:設直線PA的斜率為kPA,直線PB的斜率為kPB,則可分別表示kPA和kPB,根據傾斜角互補可知kPA=-kPB,進而求得y1+y2的值,把A,B代入拋物線方程兩式相減后即可求得直線AB的斜率.
解答:解:設直線PA的斜率為kPA,直線PB的斜率為kPB,
則kPA=
y1-2
x1-1
(x1≠1),kPB=
y2-2
x2-1
(x2≠1),
∵PA與PB的斜率存在且傾斜角互補,
∴kPA=-kPB,
由A(x1,y1),B(x2,y2)在拋物線上,得y12=4x1(1)
y22=4x2(2),
y1-2
y12
4
-1
=-
y2-2
y22
4
-1
,
∴y1+2=-(y2+2)
∴y1+y2=-4
由(1)-(2)得直線AB的斜率
y2-y1
x2-x1
=
4
y1+y2
=-1.
故答案為:-1.
點評:本小題主要考查直線、拋物線等基本知識,考查運用解析幾何的方法分析問題和解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

某地政府為科技興市,欲在如圖所示的矩形ABCD的非農業(yè)用地中規(guī)劃出一個高科技工業(yè)園區(qū)(如圖中陰影部分),形狀為直角梯形QPRE(線段EQ和RP為兩個底邊),已知AB=2km,BC=6km,AE=BF=4km其中曲線段AF是以A為頂點、AD為對稱軸的拋物線的一部分.分別以直線AB,AD為x軸和y軸建立平面直角坐標系.
(1)求曲線段AF所在拋物線的方程;
(2)設點P的橫坐標為x,高科技工業(yè)園區(qū)的面積為S.試求S關于x的函數表達式,并求出工業(yè)園區(qū)面積S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,已知二次函數y=-x2+9,矩形ABOC的頂點A在第一象限內,且A在拋物線上,頂點B、C分別在y軸、x軸上,設點A的坐標為(x,y).
(1)試求矩形ABOC的面積S關于x的函數解析式S=S(x),并求出該函數的定義域;
(2)是否存在這樣的矩形ABOC,使它的面積為6,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•大豐市一模)如圖所示,已知平面直角坐標系xOy,拋物線y=-x2+bx+c過點A(4,0)、B(1,3).
(1)求該拋物線的表達式,并寫出該拋物線的對稱軸和頂點坐標;
(2)記該拋物線的對稱軸為直線l,設拋物線上的點P(m,n)在第四象限,點P關于直線l的對稱點為E,點E關于y軸的對稱點為F,若四邊形OAPF的面積為20,求m、n的值.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年浙江省臺州市高三上學期第三次統(tǒng)練文科數學 題型:解答題

(本題滿分15分)如圖所示,已知橢圓和拋物線有公共焦點, 的中心和的頂點都在坐標原點,過點的直線與拋物線分別相交于兩點

(1)寫出拋物線的標準方程;

(2)若,求直線的方程;

(3)若坐標原點關于直線的對稱點在拋物線上,直線與橢圓有公共點,求橢圓的長軸長的最小值.

 

 

 

查看答案和解析>>

同步練習冊答案