【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(0)=0,當(dāng)x>0時,
f(x)= .
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x2-1)>-2.
【答案】
(1)解:當(dāng)x<0時,-x>0,則f(-x)=log (-x).
因為函數(shù)f(x)是偶函數(shù),所以f(-x)=f(x)=log (-x),
所以函數(shù)f(x)的解析式為
(2)解:因為f(4)=log 4=-2,f(x)是偶函數(shù),
所以不等式f(x2-1)>-2轉(zhuǎn)化為f(|x2-1|)>f(4).
又因為函數(shù)f(x)在(0,+∞)上是減函數(shù),
所以|x2-1|<4,解得- <x< ,
即不等式的解集為
【解析】本題考查函數(shù)解析式的求法,以及根據(jù)性質(zhì)求解不等式的問題。(1)根據(jù)函數(shù)的奇偶性找到在不同范圍的解析式。(2)根據(jù)函數(shù)是偶函數(shù)把不等式進行轉(zhuǎn)化,進而根據(jù)單調(diào)性脫去括號,得到不等式進行求解。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系 中,以 為極點, 軸非負半軸為極軸建立坐標系,已知曲線 的極坐標方程為 ,直線 的參數(shù)方程為: ( 為參數(shù)),兩曲線相交于 兩點.
(1)寫出曲線 的直角坐標方程和直線 的普通方程;
(2)若 求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的最小正周期是 ,若將其圖象向右平移 個單位后得到的圖象關(guān)于 軸對稱,則函數(shù) 的圖象( )
A.關(guān)于直線 對稱
B.關(guān)于直線 對稱
C.關(guān)于點 對稱
D.關(guān)于點 對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結(jié)果n=( )
A.4
B.5
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】奇函數(shù)f(x)的定義域為R,若f(x+1)為偶函數(shù),且f(1)=2,則f(8)+f(5)的值為( )
A.2
B.1
C.-1
D.-2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系 中,圓 ,圓 .
(Ⅰ)在以 為極點, 軸正半軸為極軸的極坐標系中,分別寫出圓 的極坐標方程,并求出圓 的交點坐標(用極坐標表示);
(Ⅱ)求出 與 的公共弦的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐 的底面積 是邊長為 的正三角形, 點在側(cè)面 內(nèi)的射影 為 的垂心,二面角 的平面角的大小為 ,則 的長為( )
A.3
B.
C.
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,以原點為極點, 軸正半軸為極軸建立極坐標系,并在兩坐標系中取相同的長度單位.已知曲線的極坐標方程為,直線的參數(shù)方程為
(為參數(shù), 為直線的傾斜角).
(1)寫出直線的普通方程和曲線的直角坐標方程;
(2)若直線與曲線有唯一的公共點,求角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中山某學(xué)校的場室統(tǒng)一使用“歐普照明”的一種燈管,已知這種燈管使用壽命(單位:月)服從正態(tài)分布,且使用壽命不少于個月的概率為,使用壽命不少于個月的概率為.
(1)求這種燈管的平均使用壽命;
(2)假設(shè)一間課室一次性換上支這種新燈管,使用個月時進行一次檢查,將已經(jīng)損壞的燈管換下(中途不更換),求至少兩支燈管需要更換的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com