【題目】已知數(shù)列{an}是等差數(shù)列,Sn為{an}的前n項和,且a10=19,S10=100;數(shù)列{bn}對任意nN*,總有b1b2b3bn1bn=an+2成立.

(1)求數(shù)列{an}和{bn}的通項公式;

(2)記cn=(﹣1n,求數(shù)列{cn}的前n項和Tn.

【答案】(1)an=2n1 ;(2) .

【解析】

1)列方程組解等差數(shù)列的首項和公差,再求{bn}的通項公式;

2)裂項,分奇偶討論求和.

(1)設(shè){an}的公差為d,

a10=a1+9d=19,

解得a1=1,d=2,所以an=2n1,

所以b1b2b3bn1bn=2n+1…①

當(dāng)n=1時,b1=3,

當(dāng)n2時,b1b2b3bn1=2n1…②

①②兩式相除得

因為當(dāng)n=1時,b1=3適合上式,所以.

(2)由已知

Tn=c1+c2+c3+…+cn,

當(dāng)n為偶數(shù)時,

,

當(dāng)n為奇數(shù)時,

.

綜上:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的說法正確的是(

A.命題“若,則0”的否命題為“若,則0

B.命題“函數(shù)fx)=(a1xR上的增函數(shù)”的否定是“函數(shù)fx)=(a1xR上的減函數(shù)”

C.命題“在ABC中,若sinAsinB,則AB”的逆否命題為真命題

D.命題“若x2,則x23x+20”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個從生活垃圾中提煉生物柴油的項目.經(jīng)測算該項目月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似地表示為:

,且每處理一噸生活垃圾,可得到能利用的生物柴油價值為200元,若該項目不獲利,政府將給予補貼.

1)當(dāng)時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損?

2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點在橢圓,直線x,y軸分別交于A,B兩點,0為坐標原點,且△OAB 的面積的最小值為

(1)求橢圓的離心率;

(2) 設(shè)點C、D、F2分別為橢圓的上、下頂點以及右焦點,E 為線段OD 的中點,直線F2E 與橢圓 相交于M、N 兩點,若,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若一個四位數(shù)的各位數(shù)字相加和為10,則稱該數(shù)為“完美四位數(shù)”,如數(shù)字“2017”.試問用數(shù)字0,1,2,3,4,5,6,7組成的無重復(fù)數(shù)字且大于2017的“完美四位數(shù)”有( )個.

A. 71B. 66C. 59D. 53

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線Cnx22nx+y2=0,(n=1,2,.從點P(﹣1,0)向曲線Cn引斜率為knkn>0)的切線ln,切點為Pnxn,yn.

(1)求數(shù)列{xn}與{yn}的通項公式;

(2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】朱世杰是元代著名數(shù)學(xué)家,他所著《算學(xué)啟蒙》是一部在中國乃至世界最早的科學(xué)普及著作.《算學(xué)啟蒙》中提到一些堆垛問題,如“三角垛果子”,就是將一樣大小的果子堆垛成正三棱錐,每層皆堆成正三角形,從上向下數(shù),每層果子數(shù)分別為1,3,610,…,現(xiàn)有一個“三角垛果子”,其最底層每邊果子數(shù)為10,則該層果子數(shù)為( 。

A. 50B. 55C. 100D. 110

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,曲線x軸交于A,B兩點,點Q的坐標為.

1)是否存在b,使得,如果存在求出b值;如果不存在,說明理由;

2)過A,BQ三點的圓面積最小時,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,橢圓的離心率為,直線被橢圓截得的線段長為.

(1)求橢圓的方程;

(2)過原點的直線與橢圓交于兩點(不是橢圓的頂點),點在橢圓上,且,直線軸分別交于兩點.

①設(shè)直線斜率分別為,證明存在常數(shù)使得,并求出的值;

②求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案