【題目】如圖所示,四邊形中, , , ,將沿折起,使平面平面,構成四面體,則在四面體中,下列說法不正確的是( ).

A. 直線直線 B. 直線直線

C. 直線平面 D. 平面平面

【答案】A

【解析】∵平面平面,平面平面, 平面,

平面,且平面平面.所以, 正確,故選

方法點睛】本題主要通過對多個結論真假的判斷,主要綜合考查線線垂直的判定、線面垂直的判定以及面面垂直的判定屬于難題.這種題型綜合性較強,也是高考的命題熱點,同學們往往因為某一處知識點掌握不好而導致“全盤皆輸,因此做這類題目更要細心、多讀題,盡量挖掘出題目中的隱含條件,另外,要注意從簡單的比較好判斷的命題作為突破點,然后集中精力突破較難的命題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點,動點P 滿足:|PA|=2|PB|

(1)若點P的軌跡為曲線,求此曲線的方程;

(2)若點Q在直l1: x+y+3=0上,直線l2經(jīng)過點Q且與曲線只有一個公共點M,求|QM|的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)的定義域均為,且是奇函數(shù),是偶函數(shù),,其中為自然對數(shù)的底數(shù).

(1)求的解析式,并證明:當時,

(2)若關于的不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的圖象與x軸的交點中,相鄰兩個交點之間的距離為 ,且圖象上一個最高點為M( ,3).
(1)求f(x)的解析式;
(2)先把函數(shù)y=f(x)的圖象向左平移 個單位長度,然后再把所得圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)y=g(x)的圖象,試寫出函數(shù)y=g(x)的解析式.
(3)在(2)的條件下,若總存在x0∈[﹣ , ],使得不等式g(x0)+2≤log3m成立,求實數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一個幾何體的三視圖如圖所示.

1)求此幾何體的表面積;

2)如果點在正視圖中所示位置:為所在線段中點,為頂點,求在幾何體表面上,從點到點的最短路徑的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=4cos2x﹣4 sinxcosx的最小正周期為π(>0).
(1)求的值;
(2)若f(x)的定義域為[﹣ , ],求f(x)的最大值與最小值及相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+)(ω>0,0≤≤π)為偶函數(shù),其圖象上相鄰的兩個最高點之間的距離為2π.
(1)求f(x)的解析式;
(2)若 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有甲、乙兩個班級進行數(shù)學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表.

已知從全部105人中隨機抽取1人為優(yōu)秀的概率為.

(1)請完成上面的列聯(lián)表:若按的可靠性要求,根據(jù)列聯(lián)表的數(shù)據(jù),能否認為“成績與班級有關系”;

(2)若按下面的方法從甲班優(yōu)秀的學生中抽取一人:把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號.試求抽到10號的概率.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正方體的棱長為1, 分別是棱的中點,過直線的平面分別與棱交于,設, ,給出以下四個命題:

②當且僅當時,四邊形的面積最小;

③四邊形周長, ,則是奇函數(shù);

④四棱錐的體積為常函數(shù);

其中正確命題的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案