【題目】如圖,在直四棱柱中,底面為菱形,且側(cè)棱 其中交點.

1)求點到平面的距離;

2)在線段上,是否存在一個點,使得直線垂直?若存在,求出線段的長;若不存在,請說明理由.

【答案】1;(2)存在,.

【解析】

(1)由于菱形的對角線互相垂直平分,故以ACBD的交點O為原點,以射線OAOB、分別為軸,建立空間直角坐標(biāo)系.由向量法求點到平面的距離.

2由向量的數(shù)量積為0求得,從而求得線段長.

(1) 由于菱形的對角線互相垂直平分,故以AC

BD的交點O為原點,以射線OAOB、分別為

軸,建立空間直角坐標(biāo)系.

由已知條件,相關(guān)點的坐標(biāo)為,

設(shè)平面的法向量為

,則.

故點到平面的距離為

;

(2) 設(shè) 則由

故當(dāng)時,

于是,在線段上存在點,使得此時

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,是各項均為正數(shù)的等差數(shù)列,其公差大于零.若線段,,的長分別為,,則( .

A.對任意的,均存在以,,為三邊的三角形

B.對任意的,均不存在以,,為三邊的三角形

C.對任意的,均存在以,,為三邊的三角形

D.對任意的,均不存在以,為三邊的三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年反映社會現(xiàn)實的電影《我不是藥神》引起了很大的轟動,治療特種病的創(chuàng)新藥研發(fā)成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費用(百萬元)和銷量(萬盒)的統(tǒng)計數(shù)據(jù)如下:

研發(fā)費用(百萬元)

2

3

6

10

13

15

18

21

銷量(萬盒)

1

1

2

2.5

3.5

3.5

4.5

6

(1)求的相關(guān)系數(shù)精確到0.01,并判斷的關(guān)系是否可用線性回歸方程模型擬合?(規(guī)定:時,可用線性回歸方程模型擬合);

(2)該藥企準(zhǔn)備生產(chǎn)藥品的三類不同的劑型,,并對其進行兩次檢測,當(dāng)?shù)谝淮螜z測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,,第二次檢測時,三類劑型,合格的概率分別為,,.兩次檢測過程相互獨立,設(shè)經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,求的數(shù)學(xué)期望.

附:(1)相關(guān)系數(shù)

2,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某地區(qū)某種昆蟲產(chǎn)卵數(shù)和溫度有關(guān).現(xiàn)收集了一只該品種昆蟲的產(chǎn)卵數(shù)(個)和溫度)的7組觀測數(shù)據(jù),其散點圖如所示:

根據(jù)散點圖,結(jié)合函數(shù)知識,可以發(fā)現(xiàn)產(chǎn)卵數(shù)和溫度可用方程來擬合,令,結(jié)合樣本數(shù)據(jù)可知與溫度可用線性回歸方程來擬合.根據(jù)收集到的數(shù)據(jù),計算得到如下值:

27

74

182

表中,

1)求和溫度的回歸方程(回歸系數(shù)結(jié)果精確到);

2)求產(chǎn)卵數(shù)關(guān)于溫度的回歸方程;若該地區(qū)一段時間內(nèi)的氣溫在之間(包括),估計該品種一只昆蟲的產(chǎn)卵數(shù)的范圍.(參考數(shù)據(jù):,,,.)

附:對于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的函數(shù),如果存在常數(shù),對區(qū)間的任意劃分:,和式恒成立,則稱上的絕對差有界函數(shù)。注:

1)證明函數(shù)上是絕對差有界函數(shù)。

2)證明函數(shù)不是上的絕對差有界函數(shù)

3)記集合存在常數(shù),對任意的,有成立,證明集合中的任意函數(shù)絕對差有界函數(shù),并判斷是否在集合中,如果在,請證明并求的最小值;如果不在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是一塊平行四邊形園地,經(jīng)測量,.擬過線段上一點 設(shè)計一條直路(點在四邊形的邊上,不計直路的寬度),將該園地分為面積之比為的左,右兩部分分別種植不同花卉.設(shè)(單位:m.

1)當(dāng)點與點重合時,試確定點的位置;

2)求關(guān)于的函數(shù)關(guān)系式;

3)試確定點的位置,使直路的長度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點為F,短軸的兩個端點分別為A,B,且為等邊三角形.

1)求橢圓C的方程;

2)如圖,點M在橢圓C上且位于第一象限內(nèi),它關(guān)于坐標(biāo)原點O的對稱點為N;過點Mx軸的垂線,垂足為H,直線與橢圓C交于另一點J,若,試求以線段為直徑的圓的方程;

3)已知是過點A的兩條互相垂直的直線,直線與圓相交于P,Q兩點,直線與橢圓C交于另一點R,求面積最大值時,直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視臺舉行一個比賽類型的娛樂節(jié)目,兩隊各有六名選手參賽,將他們首輪的比賽成績作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將隊第六位選手的成績沒有給出,并且告知大家隊的平均分比隊的平均分多4分,同時規(guī)定如果某位選手的成績不少于21分,則獲得晉級”.

1)主持人從隊所有選手成績中隨機抽取2個,求至少有一個為晉級的概率;

2)主持人從兩隊所有選手成績中分別隨機抽取2個,記抽取到晉級選手的總?cè)藬?shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是奇函數(shù).

1)求實數(shù)的值;

2)判斷函數(shù)上的單調(diào)性,并給出證明;

3)當(dāng)時,函數(shù)的值域是,求實數(shù)的值

查看答案和解析>>

同步練習(xí)冊答案