設(shè)a、b、c∈R,函數(shù)f(x)=x3+ax2+bx+c在x=1和x=3取得極值
(1)求a、b的值;
(2)若方程f(x)=0有3個(gè)不等實(shí)根,求c的取值范圍.
(1)∵f(x)=x3+ax2+bx+c
∴f'(x)=3x2+2ax+b
∵f(x)在x=1,x=3處取得極值
∴f'(1)=3+2a+b=0.f'(3)=27+6a+b=0
∴a=-6,b=9…(6分)
(2)∵f(x)=x3-6x2+9x+c,
∴f'(x)=3x3-12x2+9=3(x-1)(x-3)
∴x∈(-∞,1)時(shí),f'(x)>0,x∈(1,3)時(shí),f'(x)<0,x∈(3,+∞)時(shí),f'(x)>0,
∴f(x)極大值為f(1)=4+c,f(x)極小值為f(3)=c
∴方程f(x)=0有3個(gè)不等實(shí)根∴函數(shù)y=f(x)的圖象與x軸有三個(gè)不同的交點(diǎn)∴4+c>0>c
∴-4<c<0…(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镽,若存在與x無關(guān)的正常數(shù)M,使|f(x)|≤M|x|對一切實(shí)數(shù)x恒成立,則稱f(x)為有界泛函.有下面四個(gè)函數(shù):
①f(x)=1;   
②f(x)=x2;   
③f(x)=2xsinx;   
f(x)=
x
x2+x+2

其中屬于有界泛函的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年吉林省高二下學(xué)期期末測試?yán)砜茢?shù)學(xué) 題型:選擇題

設(shè)函數(shù)f()的定義域?yàn)镽,若存在與無關(guān)的正常數(shù)M,使對一切實(shí)數(shù)均成立,則稱f()為“有界泛函”,給出以下函數(shù):

①f()=      ②f()=2,   ③   ④其中是“有界泛函”的個(gè)數(shù)為(    )

    A.0          B.1        C.2        D.3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镽,若存在與x無關(guān)的正常數(shù)M,使|f(x)|≤M|x|對一切實(shí)數(shù)x恒成立,則稱f(x)為有界泛函.有下面四個(gè)函數(shù):

①f(x)=1;  

②f(x)=x2;  

③f(x)=2xsinx;  

其中屬于有界泛函的是( 。

 

A.

①②

B.

③④

C.

①③

D.

②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省廣州市高二(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)函數(shù)f(x)的定義域?yàn)镽,若存在與x無關(guān)的正常數(shù)M,使|f(x)|≤M|x|對一切實(shí)數(shù)x恒成立,則稱f(x)為有界泛函.有下面四個(gè)函數(shù):
①f(x)=1;   
②f(x)=x2;   
③f(x)=2xsinx;   

其中屬于有界泛函的是( )
A.①②
B.③④
C.①③
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f()的定義域?yàn)?i>R,若存在與無關(guān)的正常數(shù),使對一切實(shí)數(shù)均成立,則稱f()為“有界泛函”,給出以下函數(shù):

20070405

 
       ①f() =         ②f()=2             ④

其中是“有界泛函”的個(gè)數(shù)為(    )

A. 1        B. 2         C .3         D.4

查看答案和解析>>

同步練習(xí)冊答案