精英家教網 > 高中數學 > 題目詳情

設函數f(x)為奇函數,對任意的x、yÎ R都有f(xy)=f(x)f(y)x0時,f(x)0,f(1)=2,求f(x)[33]區(qū)間上最大值和最小值.

答案:6,-6
解析:

,

,∵x0f(x)0,∴

,∴f(x)為減函數,故f(3)=f(3)=[f(2)f(1)]=3f(1)=6,=f(3)=3f(1)=6


練習冊系列答案
相關習題

科目:高中數學 來源:數學教研室 題型:044

設函數f(x)為奇函數,對任意的x、yÎ R都有f(x+y)=f(x)+f(y)且x>0時,f(x)<0,f(1)=-2,求f(x)在[-3,3]區(qū)間上最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知周期函數f(x)為奇函數,且它的一個周期為3,f(0.4)=-1,求f(11.6)的值;

(2)設α∈(,π),函數f(x)=的最大值為34,求α的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(理)已知向量pq,其中p=(x+c-1,1),q=(ax2+1,y)(a,c,x,y∈R且a>0,x≠1-c),把其中x,y所滿足的關系式記為y=f(x).若函數f(x)為奇函數,且當x>0時,f(x)有最小值.

(1)求函數f(x)的表達式;

(2)設數列{an},{bn}滿足如下關系:an+1=,bn=(n∈N*),且b1=,求數列{bn}的通項公式,并求數列{(3n-1)bn}(n∈N*)前n項的和Sn.

(文)已知等差數列{an}滿足:an+1>an(n∈N*),a1=1,該數列的前三項分別加上1,1,3后順次成為等比數列{bn}的前三項.

(1)分別求數列{an},{bn}的通項公式an,bn;

(2)設Tn=(n∈N*),若Tn+<c(c∈Z)恒成立,求c的最小值.

查看答案和解析>>

科目:高中數學 來源:同步題 題型:填空題

設函數f(x)=為奇函數,則實數a=(    )。

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)為奇函數,且在(-∞,0)上是減函數,若f(-2)=0,則xf(x)<0的解集為                                                   (  ).

A.(-1,0)∪(2,+∞)            B.(-∞,-2)∪ (0,2)

C.(-∞,-2)∪(2,+∞)    D.(-2,0)∪(0,2)

查看答案和解析>>

同步練習冊答案