【題目】判斷下列函數(shù)是否存在零點,如果存在,請求出.
(1) ;
(2) ;
(3) ;
(4) .
【答案】
(1)解:令 ,解得 ,所以函數(shù) 的零點是
(2)解:令 ,由于 ,
所以方程 無實數(shù)根,所以函數(shù) 不存在零點
(3)解:令 ,解得 ,所以函數(shù) 的零點是 .
(4)解:令 ,解得 ,所以函數(shù) 的零點是 .
【解析】(1)根據(jù)題意利用零點的定義即可得出結(jié)論。(2)結(jié)合二次函數(shù)的性質(zhì)可求出判別式小于零所以方程 x2 + 2 x + 2 = 0 無實數(shù)根,所以函數(shù) f ( x ) = x2 + 2 x + 2 不存在零點.(3)根據(jù)題意利用零點的定義即可求出結(jié)果。(4)根據(jù)題意利用零點的定義即可得出結(jié)果。
【考點精析】本題主要考查了函數(shù)的零點的相關(guān)知識點,需要掌握函數(shù)的零點就是方程的實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標.即:方程有實數(shù)根,函數(shù)的圖象與坐標軸有交點,函數(shù)有零點才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列{an}的前n和為Sn , 且 是 與(an+1)2的等比中項.
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)若 ,數(shù)列{bn}的前n項和為Tn , 求Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱A1B1C1﹣A2B2C2中,各側(cè)棱均垂直于底面,∠A1B1C1=90°,A1B1=B1C1=3,C1M=2B1N=2,則直線B1C1與平面A1MN所成角的正弦值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個工廠生產(chǎn)某種產(chǎn)品每年需要固定投資 萬元,此外每生產(chǎn) 件該產(chǎn)品還需要增加投資 萬元,年產(chǎn)量為 件.當 時,年銷售總收入為 萬元;當 時,年銷售總收入為 萬元.記該工廠生產(chǎn)并銷售這種產(chǎn)品所得的年利潤為 萬元。
(1)求 (萬元)關(guān)于 (件)的函數(shù)關(guān)系式;
(2)該工廠的年產(chǎn)量為多少件時,所得年利潤最大?并求出最大值.(年利潤=年銷售總收入年總投資)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了得到函數(shù) 的圖象,可以將函數(shù)y=cos2x的圖象( )
A.向左平移 個單位長度
B.向左平移 個單位長度
C.向右平移 個單位長度
D.向右平移 個單位長度
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體AC1的棱長為1,過點A作平面A1BD的垂線,垂足為點H,則以下命題中,錯誤的命題是( )
A.點H是△A1BD的垂心
B.AH垂直平面CB1D1
C.AH的延長線經(jīng)過點C1
D.直線AH和BB1所成角為45°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知全集U=R,集合A={x∈R|2x﹣3≥0},B={x|1<x<2},C={x∈N|1≤x<a}.
(Ⅰ)求A∪B;
(Ⅱ)若C中恰有五個元素,求整數(shù)a的值;
(Ⅲ)若A∩C=,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,已知AB=2,cosB= (Ⅰ)若AC=2 ,求sinC的值;
(Ⅱ)若點D在邊AC上,且AD=2DC,BD= ,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com