如圖,直線y=kx+b與橢圓交于A、B兩點(diǎn),記△AOB的面積為S.
(1)求在k=0,0<b<1的條件下,S的最大值;
(2)當(dāng)|AB|=2,S=1時(shí),求直線AB的方程.
(1)1;(2)或或或.
解析試題分析:(1)直線與橢圓(圓錐曲線)相交和直線與圓相交的問(wèn)題有區(qū)別,直線與圓相交可以利用圓的一些性質(zhì),用幾何方法解決問(wèn)題,而直線與橢圓(圓錐曲線)相交只能用解析法解題。這里直接求出兩點(diǎn)有坐標(biāo)(用表示),求出三角形的面積,相當(dāng)于把的面積表示成了的函數(shù),然后用不等式的知識(shí)或函數(shù)知識(shí)求出最大值。(2)同樣把直線方程與橢圓方程聯(lián)立,消去,得出關(guān)于的二次方程,兩點(diǎn)的橫坐標(biāo)就是這個(gè)方程的兩解,故必須滿足,而線段的長(zhǎng),再求出原點(diǎn)到直線的距離,利用面積,列出關(guān)于的方程組,解出,即直線的方程。
試題解析:解:設(shè)點(diǎn)A的坐標(biāo)為(,點(diǎn)B的坐標(biāo)為,
由,解得
所以
當(dāng)且僅當(dāng)時(shí),.S取到最大值1.
(Ⅱ)解:由得
①
|AB|= ②
又因?yàn)镺到AB的距離 所以 、
③代入②并整理,得
解得,,代入①式檢驗(yàn),△>0
故直線AB的方程是
或或或.
考點(diǎn):直線與橢圓相交,弦長(zhǎng)公式。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的左、右焦點(diǎn)分別為,橢圓的離心率為,且橢圓C經(jīng)過(guò)點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若線段是橢圓過(guò)點(diǎn)的弦,且,求內(nèi)切圓面積最大時(shí)實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為.
(1)求橢圓的方程;
(2)過(guò)右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,則內(nèi)切圓的圓面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)(,是常數(shù)),且動(dòng)點(diǎn)到軸的距離比到點(diǎn)的距離小.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)(i)已知點(diǎn),若曲線上存在不同兩點(diǎn)、滿足,求實(shí)數(shù)的取值范圍;
(ii)當(dāng)時(shí),拋物線上是否存在異于、的點(diǎn),使得經(jīng)過(guò)、、三點(diǎn)的圓和拋物線在點(diǎn)處有相同的切線,若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的焦點(diǎn)為,,且經(jīng)過(guò)點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過(guò)的直線與橢圓交于、兩點(diǎn),問(wèn)在橢圓上是否存在一點(diǎn),使四邊形為平行四邊形,若存在,求出直線的方程,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,已知中心在原點(diǎn),離心率為的橢圓E的一個(gè)焦點(diǎn)為圓的圓心.
⑴求橢圓E的方程;
⑵設(shè)P是橢圓E上一點(diǎn),過(guò)P作兩條斜率之積為的直線,當(dāng)直線都與圓相切時(shí),求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線,為坐標(biāo)原點(diǎn),動(dòng)直線與
拋物線交于不同兩點(diǎn)
(1)求證:·為常數(shù);
(2)求滿足的點(diǎn)的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為的橢圓過(guò)點(diǎn)
(1)求橢圓的方程;
(2)設(shè)不過(guò)原點(diǎn)O的直線與該橢圓交于P,Q兩點(diǎn),滿足直線的斜率依次成等比數(shù)列,
求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知平面內(nèi)一動(dòng)點(diǎn)P到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于1.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過(guò)點(diǎn)F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點(diǎn)A,B,l2與軌跡C相交于點(diǎn)D,E,求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com