【題目】設(shè)函數(shù)f(x)= ﹣x,若不等式f(x)≤0在[﹣2,+∞)上有解,則實(shí)數(shù)a的最小值為(
A.
B.
C.
D.

【答案】C
【解析】解:f(x)= ﹣x≤0在[﹣2,+∞)上有解 2aex ﹣x在[﹣2,+∞)上有解
2a≥[ ]min(x≥﹣2).
令g(x)= = ,
則g′(x)=3x2+3x﹣6﹣ =(x﹣1)(3x+6+ ),
∵x∈[﹣2,+∞),
∴當(dāng)x∈[﹣2,1)時(shí),g′(x)<0,g(x)在區(qū)間[﹣2,1)上單調(diào)遞減;
當(dāng)x∈(1,+∞)時(shí)g′(x)>0,g(x)在區(qū)間(1,+∞)上單調(diào)遞增;
∴當(dāng)x=1時(shí),g(x)取得極小值g(1)=1+ ﹣6+2﹣ =﹣ ,也是最小值,
∴2a≥﹣
∴a≥
故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足cos2B﹣cos2C﹣sin2A=sinAsinB.
(1)求角C;
(2)若c=2 ,△ABC的中線CD=2,求△ABC面積S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生會為了調(diào)查學(xué)生對2018年俄羅斯世界杯的關(guān)注是否與性別有關(guān),抽樣調(diào)查100人,得到如下數(shù)據(jù):

不關(guān)注

關(guān)注

總計(jì)

男生

30

15

45

女生

45

10

55

總計(jì)

75

25

100

根據(jù)表中數(shù)據(jù),通過計(jì)算統(tǒng)計(jì)量K2= ,并參考一下臨界數(shù)據(jù):

P(K2>k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

若由此認(rèn)為“學(xué)生對2018年俄羅斯年世界杯的關(guān)注與性別有關(guān)”,則此結(jié)論出錯的概率不超過(
A.0.10
B.0.05
C.0.025
D.0.01

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,并且b=2
(1)若角A,B,C成等差數(shù)列,求△ABC外接圓的半徑;
(2)若三邊a,b,c成等差數(shù)列,求△ABC內(nèi)切圓半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)g(x)+f(x)g′(x)<0且f(﹣1)=0則不等式f(x)g(x)<0的解集為(
A.(﹣1,0)∪(1,+∞)
B.(﹣1,0)∪(0,1)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣∞,﹣1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣2ax(其中a∈R).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的圖象在x=1處的切線方程;
(Ⅱ)若f(x)≤1恒成立,求a的取值范圍;
(Ⅲ)設(shè)g(x)=f(x)+ x2 , 且函數(shù)g(x)有極大值點(diǎn)x0 , 求證:x0f(x0)+1+ax02>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若方程|x2﹣2x﹣1|﹣t=0有四個不同的實(shí)數(shù)根x1、x2、x3、x4,且x1<x2<x3<x4 , 則2(x4﹣x1)+(x3﹣x2)的取值范圍是(
A.(8,6
B.(6 ,4
C.[8,4 ]
D.(8,4 ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函數(shù)y=f(x)的表達(dá)式,并直接寫出其單調(diào)區(qū)間(不需要證明);
(3)若f(lga)+2<0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線x2 =1的右支上一點(diǎn)P,分別向圓C1:(x+4)2+y2=4和圓C2:(x﹣4)2+y2=1作切線,切點(diǎn)分別為M,N,則|PM|2﹣|PN|2的最小值為(
A.10
B.13
C.16
D.19

查看答案和解析>>

同步練習(xí)冊答案