已知函數(shù).
(1)當時,求函數(shù)的極值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)是否存在實數(shù),使函數(shù)在上有唯一的零點,若有,請求出的范圍;若沒有,請說明理由.
(1),無極大值;(2)見解析;(3)存在,或.
【解析】
試題分析:(1)先找到函數(shù)的定義域,在定義域內(nèi)進行作答,在條件下求出函數(shù)的導(dǎo)函數(shù),根據(jù)函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,判斷函數(shù)的極值;(2)先求出函數(shù)的導(dǎo)函數(shù),其導(dǎo)函數(shù)中含有參數(shù),所以要進行分類討論,對分三種情況,,進行討論,分別求出每種情況下的函數(shù)的單調(diào)增區(qū)間和單調(diào)減區(qū)間;(3)結(jié)合(2)中的結(jié)果,找到函數(shù)的極值點,要滿足題中的要求,那么或,解不等式,在的范圍內(nèi)求解.
試題解析:(1) 函數(shù)的定義域是, 1分
當時,,
所以在上遞減,在上遞增,
所以函數(shù)的極小值為,無極大值; 4分
(2)定義域, 5分
①當,即時,由,得的增區(qū)間為;由,得的減區(qū)間為; 6分
②當,即時,由,得的增區(qū)間為和;由,得的減區(qū)間為; 7分
③當,即時,由,得的增區(qū)間為和;由,得的減區(qū)間為; 8分
綜上,時,的增區(qū)間為,減區(qū)間為;
時,的增區(qū)間為和,減區(qū)間為;
時,的增區(qū)間為和,減區(qū)間為; 9分
(3)當時,由(2)知在的極小值為,而極大值為;
由題意,函數(shù)的圖象與在上有唯一的公共點,
所以,或,結(jié)合,
解得或. 13分
考點:1、對數(shù)函數(shù)的定義域;2、含參數(shù)的分類討論思想;3、函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;4、解不等式;5、求函數(shù)的極值.
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12高☆考♂資♀源*網(wǎng)分)
已知函數(shù)。
(1) 當m=0時,求在區(qū)間上的取值范圍;
(2) 當時,,求m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省福州市八縣(市)協(xié)作校高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)卷 題型:解答題
(本題14分)已知函數(shù),。
(1)當t=8時,求函數(shù)的單調(diào)區(qū)間;
(2)求證:當時,對任意正實數(shù)都成立;
(3)若存在正實數(shù),使得對任意的正實數(shù)都成立,請直接寫出滿足這樣條件的一個的值(不必給出求解過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年高考試題(江西卷)解析版(理) 題型:解答題
已知函數(shù)。
(1) 當m=0時,求在區(qū)間上的取值范圍; (2) 當時,,求m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù).
(1)當=1,求函數(shù)單調(diào)遞增區(qū)間;
(2)當<0且∈[0,]時,函數(shù)的值域為[3,4],求+b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù),
(1)當=1時,曲線與直線=1交于點P,求曲線在點P處的切線方程;
(2)當<0,求函數(shù)單調(diào)遞增區(qū)間:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com