【題目】某保險的基本保費為a(單位:元),繼續(xù)購買該保險的投保人成為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關(guān)聯(lián)如下:

上年度出險次數(shù)

0

1

2

3

4

≥5

保費

0.85a

a

1.25a

1.5a

1.75a

2a

設(shè)該險種一續(xù)保人一年內(nèi)出險次數(shù)與相應(yīng)概率如下:

一年內(nèi)出險次數(shù)

0

1

2

3

4

≥5

概率

0.30

0.15

0.20

0.20

0.10

0.05

(Ⅰ)求一續(xù)保人本年度的保費高于基本保費的概率;
(Ⅱ)若一續(xù)保人本年度的保費高于基本保費,求其保費比基本保費高出60%的概率;
(Ⅲ)求續(xù)保人本年度的平均保費與基本保費的比值.

【答案】解:(Ⅰ)∵某保險的基本保費為a(單位:元),

上年度出險次數(shù)大于等于2時,續(xù)保人本年度的保費高于基本保費,

∴由該險種一續(xù)保人一年內(nèi)出險次數(shù)與相應(yīng)概率統(tǒng)計表得:

一續(xù)保人本年度的保費高于基本保費的概率:

p1=1﹣0.30﹣0.15=0.55.

(Ⅱ)設(shè)事件A表示“一續(xù)保人本年度的保費高于基本保費”,事件B表示“一續(xù)保人本年度的保費比基本保費高出60%”,

由題意P(A)=0.55,P(AB)=0.10+0.05=0.15,

由題意得若一續(xù)保人本年度的保費高于基本保費,

則其保費比基本保費高出60%的概率:

p2=P(B|A)= = =

(Ⅲ)由題意,續(xù)保人本年度的平均保費與基本保費的比值為:

=1.23,

∴續(xù)保人本年度的平均保費與基本保費的比值為1.23


【解析】(Ⅰ)上年度出險次數(shù)大于等于2時,續(xù)保人本年度的保費高于基本保費,由此利用該險種一續(xù)保人一年內(nèi)出險次數(shù)與相應(yīng)概率統(tǒng)計表根據(jù)對立事件概率計算公式能求出一續(xù)保人本年度的保費高于基本保費的概率.(Ⅱ)設(shè)事件A表示“一續(xù)保人本年度的保費高于基本保費”,事件B表示“一續(xù)保人本年度的保費比基本保費高出60%”,由題意求出P(A),P(AB),由此利用條件概率能求出若一續(xù)保人本年度的保費高于基本保費,則其保費比基本保費高出60%的概率.(Ⅲ)由題意,能求出續(xù)保人本年度的平均保費與基本保費的比值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣1﹣ ,a∈R.
(1)若函數(shù)g(x)=(x﹣1)f(x)在(0,1)上有且只有一個極值點,求a的范圍;
(2)當(dāng)a≤﹣1時,證明:f(x)lnx>0對于任意x∈(0,1)∪(1,+∞)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=alog2(|x|+4)+x2+a2﹣8有唯一的零點,則實數(shù)a的值是(
A.﹣4
B.2
C.±2
D.﹣4或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a>b>1,0<c<1,則(
A.ac<bc
B.abc<bac
C.alogbc<blogac
D.logac<logbc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E,G分別在邊DA,DC上(不與端點重合),且DE=DG,過D點作DF⊥CE,垂足為F.
(Ⅰ)證明:B,C,G,F(xiàn)四點共圓;
(Ⅱ)若AB=1,E為DA的中點,求四邊形BCGF的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= +ln( +x)+ cos xdx在區(qū)間[﹣k,k](k>0)上的值域為[m,n],則m+n的值是( )
A.0
B.2
C.4
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的直三棱柱ABC﹣A1B1C1中,面AA1B1B和面AA1C1C都是邊長為1的正方形且互相垂直,D為AA1的中點,E為BC1的中點.
(Ⅰ)證明:DE∥平面A1B1C1;
(Ⅱ)求平面C1BD和平面CBD所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)證明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x+1)lnx,g(x)=a(x﹣1)(a∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥g(x)對任意的x∈[1,+∞)恒成立,求實數(shù)a的取值范圍;
(Ⅲ)求證:ln2ln3…lnn> (n≥2,n∈N+).

查看答案和解析>>

同步練習(xí)冊答案