如圖,AB是圓O的直徑,PA垂直圓O所在的平面,C是圓O上的點(diǎn).

(1)求證:BC⊥平面PAC
(2)設(shè)QPA的中點(diǎn),G為△AOC的重心,求證:QG∥平面PBC.
見解析
(1)由AB是圓O的直徑,得ACBC
PA⊥平面ABC,BC?平面ABC,得PABC.
PAACA,PA?平面PAC,AC?平面PAC,
所以BC⊥平面PAC.
(2)連接OG并延長交ACM,連接QMQO,由G為△AOC的重心,得MAC中點(diǎn).

QPA中點(diǎn),得QMPC
OAB中點(diǎn),得OMBC.
因?yàn)?i>QM∩MOM,QM?平面QMO,
MO?平面QMOBCPCC,
BC?平面PBC,PC?平面PBC.
所以平面QMO∥平面PBC.
因?yàn)?i>QG?平面QMO,所以QG∥平面PBC.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形中,點(diǎn)為邊上的點(diǎn),點(diǎn)為邊的中點(diǎn),,現(xiàn)將沿邊折至位置,且平面平面.

(1) 求證:平面平面;
(2) 求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知α,β,γ是三個(gè)不同的平面,命題“α∥β,且α⊥γ⇒β⊥γ”是真命題,如果把α,β,γ中的任意兩個(gè)換成直線,另一個(gè)保持不變,在所得的所有新命題中,真命題有(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,下列為真命題的是(  )
A.若m⊥α,n⊥β,m⊥n,則α⊥β
B.若α⊥β,α∩β=m,m⊥n,則n⊥β
C.若α⊥β,m⊥α,n∥β,則m⊥n
D.若α∥β,m⊥α,n∥β,則m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知α,β是兩個(gè)不同的平面,下列四個(gè)條件:
①存在一條直線a,a⊥α,a⊥β;
②存在一個(gè)平面γ,γ⊥α,γ⊥β;
③存在兩條平行直線a,b,a?α,b?β,a∥β,b∥α;
④存在兩條異面直線a,b,a?α,b?β,a∥β,b∥α.
其中是平面α∥平面β的充分條件的為________(填上所有符號要求的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出四個(gè)命題:
①平行于同一平面的兩個(gè)不重合的平面平行;
②平行于同一直線的兩個(gè)不重合的平面平行;
③垂直于同一平面的兩個(gè)不重合的平面平行;
④垂直于同一直線的兩個(gè)不重合的平面平行;
其中真命題的序號是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)P在直線BC1上運(yùn)動時(shí),有下列三個(gè)命題:①三棱錐AD1PC的體積不變;②直線AP與平面ACD1所成角的大小不變;③二面角P-AD1-C的大小不變.其中真命題的序號是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在四邊形A-BCD中,ADBC,ADAB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐A­BCD,則在三棱錐ABCD中,下列命題正確的是(  ).
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知一個(gè)平面與正方體的12條棱的夾角均為,那么        .

查看答案和解析>>

同步練習(xí)冊答案