如圖,三棱錐中,的中點,,,二面角的大小為

(1)證明:平面;
(2)求直線與平面所成角的正弦值.

(1)取BD中點M,連結(jié)MA,MB得到
,即 

平面
證得,證,平面 ;
(2)直線與平面所成角的正弦值為

解析試題分析:(1)取BD中點M,連結(jié)MA,MB            1分
所以
,即            2分

的平面角           4分
所以
,平面
                5分
中,,如圖②,取AM中點O
則知為正三角形,

            6分

平面            7分
(2)解法一、向量法:
建立如圖直角坐標(biāo)系M-xyz           8分

,,, 
,        9分
設(shè)平面的法向量為,即有       10分
                          11分
設(shè)直線與平面所成角為
                     13分
即直線與平面所成角的正弦值為.            14分
解法二、幾何法:提示:取AB中點N   
考點:本題主要考查立體幾何中的垂直關(guān)系、角的計算。
點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用空間向量,省去繁瑣的證明,也是解決立體幾何問題的一個基本思路。注意運用轉(zhuǎn)化與化歸思想,將空間問題轉(zhuǎn)化成平面問題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐中,底面為正方形,,
平面,為棱的中點.

(1)求證:平面平面;
(2)求二面角的余弦值.
(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形, AF∥DE,AF⊥FE,AF=AD=2 DE=2.

(Ⅰ) 求異面直線EF與BC所成角的大;
(Ⅱ) 若二面角A-BF-D的平面角的余弦值為,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

AB為圓O的直徑,點E、F在圓上,AB//EF,矩形ABCD所在平面與圓O所在平面互相垂直,已知AB=2,BC=EF=1。

(I)求證:BF⊥平面DAF;
(II)求多面體ABCDFE的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐P-ABCD的底面為正方形,側(cè)面PAD是正三角形,且側(cè)面PAD⊥底面ABCD,

(I) 求證:平面PAD⊥平面PCD
(II)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE,F(xiàn)為CD中點.

(Ⅰ)求證:EF⊥平面BCD;
(Ⅱ)求二面角C-DE-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知菱形,其邊長為2,,繞著順時針旋轉(zhuǎn)得到,的中點.

(1)求證:平面;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直線A1B上.

(1)求證:平面A1BC⊥平面ABB1A1;
(2)若,AB=BC=2,P為AC中點,求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,矩形ABCD中,AB=3,BC=4.E,F(xiàn)分別在線段BC和AD上,EF//AB,將矩形ABEF沿EF折起.記折起后的矩形為MNEF,且平面MNEF⊥平面ECDF.

(1)求證:NC∥平面MFD;
(2)若EC=3,求證:ND⊥FC;
(3)求四面體NFEC體積的最大值.

查看答案和解析>>

同步練習(xí)冊答案