【題目】設(shè)直線的方程為.
(1)求證:不論為何值,直線必過一定點(diǎn);
(2)若直線分別與軸正半軸,軸正半軸交于點(diǎn),,當(dāng)而積最小時(shí),求的周長;
(3)當(dāng)直線在兩坐標(biāo)軸上的截距均為整數(shù)時(shí),求直線的方程.
【答案】(1)證明見解析;(2) ;(3) ,,,,
【解析】
(1)將原式變形為,由可得直線必過一定點(diǎn);
(2)由題可得,,則,求出最值,并找到最值的條件,進(jìn)而可得的周長;
(3) ,均為整數(shù),變形得,只要是整數(shù)即可,另外不要漏掉截距為零的情況,求出,進(jìn)而可得直線的方程.
解:(1)由得,
則,解得,
所以不論為何值,直線必過一定點(diǎn);
(2)由得,
當(dāng)時(shí),,當(dāng)時(shí),,
又由,得,
,
當(dāng)且僅當(dāng),即時(shí),取等號(hào).
,,
的周長為;
(3) 直線在兩坐標(biāo)軸上的截距均為整數(shù),
即,均為整數(shù),
,,
又當(dāng)時(shí),直線在兩坐標(biāo)軸上的截距均為零,也符合題意,
所以直線的方程為,,,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是我國2010年至2016年生活垃圾無害化處理量(單位:億噸)的折線圖
注:年份代碼1~7分別對應(yīng)年份2010~2016
(1)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請求出相關(guān)系數(shù)r,并用相關(guān)系數(shù)的大小說明y與t相關(guān)性的強(qiáng)弱;
(2)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測2018年我國生活垃圾無害化處理量.
附注:
參考數(shù)據(jù):,,, .
參考公式:
相關(guān)系數(shù)
回歸方程 中斜率和截距的最小二乘估計(jì)公式分別為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《張丘建算經(jīng)》是中國古代數(shù)學(xué)名著.書中有如下問題;“今有十等人大官甲等十人.宮賜金依次差降之.上三人先入,得金四斤,持出;下四人后入,得金三斤,持出;中央三人未到者,亦依等次更給.問各得金幾何及未到三人復(fù)應(yīng)得金幾何.”其意思為:“宮廷依次按照等差數(shù)列賞賜甲乙丙丁戊己庚辛壬癸十位官員,前面甲乙丙三人進(jìn)來,共領(lǐng)到四斤黃金之后,便拿著離開了;接著庚辛壬癸四人共領(lǐng)到三斤黃金后,也拿著離開了;中間丁戊己三人沒到,也要按照應(yīng)分得的數(shù)量留給他們.問這十人各得黃金多少,并問沒到的三人共應(yīng)該得到多少黃金.”丁戊己三人共應(yīng)得黃金的斤數(shù)為( )
A.3B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),面積的最大值是.
(1)求橢圓的方程;
(2)若是橢圓上不重合的四點(diǎn),與相交于點(diǎn),,且,求此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】1970年4月24日,我國發(fā)射了自己的第一顆人造地球衛(wèi)星“東方紅一號(hào)”,從此我國開啟了人造衛(wèi)星的新篇章,人造地球衛(wèi)星繞地球運(yùn)行遵循開普勒行星運(yùn)動(dòng)定律:衛(wèi)星在以地球?yàn)榻裹c(diǎn)的橢圓軌道上繞地球運(yùn)行時(shí),其運(yùn)行速度是變化的,速度的變化服從面積守恒規(guī)律,即衛(wèi)星的向徑(衛(wèi)星與地球的連線)在相同的時(shí)間內(nèi)掃過的面積相等.設(shè)橢圓的長軸長、焦距分別為,,下列結(jié)論不正確的是( )
A.衛(wèi)星向徑的最小值為
B.衛(wèi)星向徑的最大值為
C.衛(wèi)星向徑的最小值與最大值的比值越小,橢圓軌道越扁
D.衛(wèi)星運(yùn)行速度在近地點(diǎn)時(shí)最小,在遠(yuǎn)地點(diǎn)時(shí)最大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的圖象的對稱軸之間的最短距離為,且經(jīng)過點(diǎn).
(1)寫出函數(shù)的解析式;
(2)若對任意的,恒成立,求實(shí)數(shù)的取值范圍;
(3)求實(shí)數(shù)和正整數(shù),使得在上恰有2017個(gè)零點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com