20、已知各項(xiàng)均為實(shí)數(shù)的數(shù)列{an}是公差為d的等差數(shù)列,它的前n項(xiàng)和為Sn,且滿足S4=2S2+8.
(1)求公差d的值;
(2)若數(shù)列{an}的首項(xiàng)的平方與其余各項(xiàng)之和不超過(guò)10,則這樣的數(shù)列至多有多少項(xiàng);
(3)請(qǐng)直接寫出滿足(2)的項(xiàng)數(shù)最多時(shí)的一個(gè)數(shù)列(不需要給出演算步驟).
分析:(1)根據(jù)S4=2S2+8,利用等差數(shù)列的前n項(xiàng)和的公式列出方程,求出公差d即可;
(2)根據(jù)a1大于0,小于0,等于0分三種情況,利用公差d=2及枚舉法分別得到數(shù)列至多有多少項(xiàng)即可;
(3)根據(jù)(2)總結(jié)的項(xiàng)數(shù)最多時(shí)的結(jié)論,給a1一個(gè)實(shí)數(shù)值,即可到底滿足條件的一個(gè)數(shù)列.
解答:解:(1)根據(jù)題意可知:4a1-6d=2(2a1-d)+8,解得d=2;
(2)考慮到d=2,且首項(xiàng)的平方與其余各項(xiàng)之和不超過(guò)10,所以可用枚舉法研究.
①當(dāng)a1=0時(shí),02+d+2d=0+2+4≤10,而02+d+2d+3d=0+2+4+6>10,此時(shí),數(shù)列至多3項(xiàng);
②當(dāng)a1>0時(shí),可得數(shù)列至多3項(xiàng);
③當(dāng)a1<0時(shí),a12+a1+d+a1+2d+a1+3d≤10,即a12+3a1+2≤0,△=1>0,此時(shí)a1有解.
而a12+a1+d+a1+2d+a1+3d+a1+4d≤10,即a12+4a1+10≤0,△=-24<0,此時(shí)a1無(wú)解.
所以a1<0時(shí),數(shù)列至多有4項(xiàng).
(3)a1=-1時(shí),數(shù)列為:-1,1,3,5;或a1=-2時(shí),數(shù)列為:-2,0,2,4.
點(diǎn)評(píng):考查學(xué)生掌握等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和的公式,會(huì)利用枚舉法解決實(shí)際問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知各項(xiàng)均為實(shí)數(shù)的數(shù)列{an}是公差為d的等差數(shù)列,它的前n項(xiàng)和為Sn,且滿足S4=2S2+8.
(1)求公差d的值;
(2)若數(shù)列{an}的首項(xiàng)的平方與其余各項(xiàng)之和不超過(guò)10,則這樣的數(shù)列至多有多少項(xiàng);
(3)請(qǐng)直接寫出滿足(2)的項(xiàng)數(shù)最多時(shí)的一個(gè)數(shù)列(不需要給出演算步驟).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知各項(xiàng)均為實(shí)數(shù)的數(shù)列{an}是公差為d的等差數(shù)列,它的前n項(xiàng)和為Sn,且滿足S4=2S2+8.
(1)求公差d的值;
(2)若數(shù)列{an}的首項(xiàng)的平方與其余各項(xiàng)之和不超過(guò)10,則這樣的數(shù)列至多有多少項(xiàng);
(3)請(qǐng)直接寫出滿足(2)的項(xiàng)數(shù)最多時(shí)的一個(gè)數(shù)列(不需要給出演算步驟).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)均為實(shí)數(shù)的數(shù)列{an}是公差為d的等差數(shù)列,它的前n項(xiàng)和為Sn,且滿足S4=2S2+8.

(1)求公差d的值;

(2)若數(shù)列{an}的首項(xiàng)的平方與其余各項(xiàng)之和不超過(guò)10,則這樣的數(shù)列至多有多少項(xiàng);

(3)請(qǐng)直接寫出滿足(2)的項(xiàng)數(shù)最多時(shí)的一個(gè)數(shù)列(不需要給出演算步驟).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省南京十三中高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知各項(xiàng)均為實(shí)數(shù)的數(shù)列{an}是公差為d的等差數(shù)列,它的前n項(xiàng)和為Sn,且滿足S4=2S2+8.
(1)求公差d的值;
(2)若數(shù)列{an}的首項(xiàng)的平方與其余各項(xiàng)之和不超過(guò)10,則這樣的數(shù)列至多有多少項(xiàng);
(3)請(qǐng)直接寫出滿足(2)的項(xiàng)數(shù)最多時(shí)的一個(gè)數(shù)列(不需要給出演算步驟).

查看答案和解析>>

同步練習(xí)冊(cè)答案