已知函數(shù),()
(1)若函數(shù)存在極值點(diǎn),求實(shí)數(shù)b的取值范圍;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)且時,令,(),()為曲線y=上的兩動點(diǎn),O為坐標(biāo)原點(diǎn),能否使得是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊中點(diǎn)在y軸上?請說明理由。
(1)
(2)當(dāng)時,,函數(shù)的單調(diào)遞增區(qū)間為;
當(dāng)時,,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為。
(3)對任意給定的正實(shí)數(shù),曲線上總存在兩點(diǎn),使得是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊中點(diǎn)在y軸上
解析試題分析:解:(Ⅰ),若存在極值點(diǎn),則有兩個不相等實(shí)數(shù)根。所以, 2分
解得 3分
(Ⅱ) 4分
當(dāng)時,,函數(shù)的單調(diào)遞增區(qū)間為; 5分
當(dāng)時,,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為。
7分
(Ⅲ) 當(dāng)且時,假設(shè)使得是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊中點(diǎn)在y軸上。則且。 8分
不妨設(shè)。故,則。,該方程有解 9分
當(dāng)時,則,代入方程得即,而此方程無實(shí)數(shù)解; 10分
當(dāng)時,則; 11分
當(dāng)時,則,代入方程得即, 12分
設(shè),則在上恒成立。在上單調(diào)遞增,從而,則值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c9/b/glguq1.png" style="vertical-align:middle;" />。
當(dāng)時,方程有解,即方程有解。 13分
綜上所述,對任意給定的正實(shí)數(shù),曲線上總存在兩點(diǎn),使得是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊中點(diǎn)在y軸上。 14分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評:主要是考查了導(dǎo)數(shù)在研究函數(shù)單調(diào)性以及函數(shù)與方程思想的綜合運(yùn)用,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若,求在圖象與軸交點(diǎn)處的切線方程;
(2)若在(1,2)上為單調(diào)函數(shù),求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)試問該函數(shù)能否在處取到極值?若有可能,求實(shí)數(shù)的值;否則說明理由;
(2)若該函數(shù)在區(qū)間上為增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),記的導(dǎo)函數(shù),的導(dǎo)函數(shù)
,
的導(dǎo)函數(shù),…,的導(dǎo)函數(shù),.
(1)求;
(2)用n表示;
(3)設(shè),是否存在使最大?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)命題p:函數(shù)的定義域?yàn)镽;命題q:不等式對任意恒成立.
(Ⅰ)如果p是真命題,求實(shí)數(shù)的取值范圍;
(Ⅱ)如果命題“p或q”為真命題且“p且q”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在實(shí)數(shù)集上的函數(shù),,其導(dǎo)函數(shù)記為,
(1)設(shè)函數(shù),求的極大值與極小值;
(2)試求關(guān)于的方程在區(qū)間上的實(shí)數(shù)根的個數(shù)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com