【題目】已知三棱柱ABC﹣A′B′C′,側(cè)棱與底面垂直,且所有的棱長(zhǎng)均為2,E為AA′的中點(diǎn),F(xiàn)為AB的中點(diǎn). (Ⅰ)求多面體ABCB′C′E的體積;
(Ⅱ)求異面直線C'E與CF所成角的余弦值.

【答案】解:(Ⅰ)直三棱柱ABC﹣A′B′C′的體積V= =2 . 三棱錐E﹣A′B′C′的體積V1= A′E= =
∴多面體ABCB′C′E的體積=V﹣V1=
(Ⅱ)如圖所示,取A′B′的中點(diǎn)D,連接C′D,DF,DE.

可得四邊形CFDC′是矩形.
∴C′D∥CF.
∴∠EC′D即是異面直線C′E與CF所成角.
在Rt△C′DE中,C′D= ,C′E=
∴cos∠EC′D= = =
∴異面直線C′E與CF所成角的余弦值為
【解析】(Ⅰ)分別求出直三棱柱ABC﹣A′B′C′的體積V.三棱錐E﹣A′B′C′的體積V1 . 即可得出多面體ABCB′C′E的體積=V﹣V1;(Ⅱ)如圖所示,取A′B′的中點(diǎn)D,連接C′D,DF,DE.可得四邊形CFDC′是矩形.C′D∥CF.因此∠EC′D即是異面直線C′E與CF所成角.
【考點(diǎn)精析】掌握異面直線及其所成的角是解答本題的根本,需要知道異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓經(jīng)過(guò)變換后得曲線.

(1)求的方程;

(2)若為曲線上兩點(diǎn), 為坐標(biāo)原點(diǎn),直線的斜率分別為,求直線被圓截得弦長(zhǎng)的最大值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是正四棱柱的一個(gè)截面,此截面與棱交于點(diǎn) , ,其中分別為棱上一點(diǎn).

(1)證明:平面平面

(2)為線段上一點(diǎn),若四面體與四棱錐的體積相等,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地政府為了對(duì)房地產(chǎn)市場(chǎng)進(jìn)行調(diào)控決策,統(tǒng)計(jì)部門(mén)對(duì)外來(lái)人口和當(dāng)?shù)厝丝谶M(jìn)行了買(mǎi)房的心理預(yù)期調(diào)研,用簡(jiǎn)單隨機(jī)抽樣的方法抽取了110人進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表(不全):

已知樣本中外來(lái)人口數(shù)與當(dāng)?shù)厝丝跀?shù)之比為3:8.

(1)補(bǔ)全上述列聯(lián)表;

(2)從參與調(diào)研的外來(lái)人口中用分層抽樣方法抽取6人,進(jìn)一步統(tǒng)計(jì)外來(lái)人口的某項(xiàng)收入指標(biāo),若一個(gè)買(mǎi)房人的指標(biāo)記為3,一個(gè)猶豫人的指標(biāo)記為2,一個(gè)不買(mǎi)房人的指標(biāo)記為1,現(xiàn)在從這6人中再隨機(jī)選取3人,用表示這3人指標(biāo)之和,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于關(guān)于x的不等式ax2+bx+c<0的解集為(﹣∞,﹣2)∪(﹣ ,+∞),則不等式ax2﹣bx+c>0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣(a+1)x+1(a∈R)
(1)若關(guān)于x的不等式f(x)>0的解集為R,求實(shí)數(shù)a的取值范圍;
(2)若關(guān)于x的不等式f(x)≤0的解集為P,集合Q={x|0≤x≤1},若P∩Q=,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐P﹣ABCD的底面ABCD是邊長(zhǎng)為1的菱形,∠BCD=60°,E是CD的中點(diǎn),PA⊥底面ABCD,PA=
(Ⅰ)證明:平面PBE⊥平面PAB;
(Ⅱ)求二面角A﹣BE﹣P的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知AB⊥側(cè)面BB1C1C,CB⊥C1B,BC=1,CC1=2,A1B1= ,
(1)試在棱CC1(不包含端點(diǎn)C,C1)上確定一點(diǎn)E的位置,使得EA⊥EB1;
(2)在(1)的條件下,求AE和BC1所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x),g(x)分別是R上的奇函數(shù)、偶函數(shù),且滿足f(x)+g(x)=2x , 則有(
A.f(3)<g(0)<f(4)
B.g(0)<f(4)<f(3)
C.g(0)<f(3)<f(4)
D.f(3)<f(4)<g(0)

查看答案和解析>>

同步練習(xí)冊(cè)答案