,使得恒成立,求a的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ex-a(x+1).
(1)若a>0,f(x)≥0對一切x∈R恒成立,求a的最大值;
(2)設(shè)g(x)=f(x)+
a
ex
,A(x1y1),B(x2,y2)(x1x2)
是曲線y=g(x)上任意兩點(diǎn),若對任意的a≤-1,直線AB的斜率恒大于常數(shù)m,求m的取值范圍;
(3)是否存在正整數(shù)a.使得1n+3n+…+(2n-1)n
e
e-1
(an)n
對一切正整數(shù)n都成立?若存在,求a的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=logax,其中a>1.
(Ⅰ)當(dāng)x∈[0,1]時(shí),g(ax+2)>1恒成立,求a的取值范圍;
(Ⅱ)設(shè)m(x)是定義在[s,t]上的函數(shù),在(s,t)內(nèi)任取n-1個(gè)數(shù)x1,x2,…,xn-2,xn-1,設(shè)x1<x2<…<xn-2<xn-1,令s=x0,t=xn,如果存在一個(gè)常數(shù)M>0,使得
n
i=1
|m(xi)-m(xi-1)|≤M
恒成立,則稱函數(shù)m(x)在區(qū)間[s,t]上的具有性質(zhì)P.
試判斷函數(shù)f(x)=|g(x)|在區(qū)間[
1
a
a2]
上是否具有性質(zhì)P?若具有性質(zhì)P,請求出M的最小值;若不具有性質(zhì)P,請說明理由.
(注:
n
i=1
|m(xi)-m(xi-1)|=|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xn)-m(xn-1)|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2-1,x∈R,a∈R.
(Ⅰ) 設(shè)對任意x∈(-∞,0],f(x)≤x恒成立,求a的取值范圍;
(Ⅱ) 是否存在實(shí)數(shù)a,使得滿足f(t)=4t2-2alnt的實(shí)數(shù)t有且僅有一個(gè)?若存在,求出所有這樣的a;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•東城區(qū)模擬)已知函數(shù):f(x)=x-(a+1)lnx-
a
x
(a∈R)
,g(x)=
1
2
x2+ex-xex

(1)當(dāng)x∈[1,e]時(shí),求f(x)的最小值;
(2)當(dāng)a<1時(shí),若存在x1∈[e,e2],使得對任意的x2∈[-2,0],f(x1)<g(x2)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案