精英家教網 > 高中數學 > 題目詳情

【題目】已知平面內一動點與兩定點連線的斜率之積等于.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)設直線 )與軌跡交于、兩點,線段的垂直平分線交軸于點,當變化時,求面積的最大值.

【答案】(Ⅰ));(Ⅱ).

【解析】試題分析:(1)設點的坐標列式,即可求橢圓E的方程;

2)首先設Ax1y1),Bx2y2),將直線y=x+m代入橢圓方程根據韋達定理與判別式求出x1+x2、x1x2m2的范圍,進而求出|AB|,設AB中點,求出的坐標即可得到的距離,可得,可求出三角形面積的最大值.

試題解析:(Ⅰ)設的坐標為,

依題意得,

化簡得軌跡的方程為).

(Ⅱ)設,

聯立方程組化簡得: ,

有兩個不同的交點,

由根與系數的關系得, ,

,即.

、中點為 點橫坐標, ,

線段的垂直平分線方程為.

點坐標為.

的距離,

由弦長公式得

,

當且僅當 時等號成立,

.

點晴:本題主要考查直線與圓錐曲線位置關系. 直線和圓錐曲線的位置關系一方面要體現方程思想,另一方面要結合已知條件,從圖形角度求解.聯立直線與圓錐曲線的方程得到方程組,化為一元二次方程后由根與系數的關系求解是一個常用的方法. 涉及弦長的問題中,應熟練地利用根與系數關系、設而不求法計算弦長;涉及垂直關系時也往往利用根與系數關系、設而不求法簡化運算;涉及過焦點的弦的問題,可考慮用圓錐曲線的定義求解.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】據報道,巴基斯坦由中方投資運營的瓜達爾港目前已通航.這是一個可以?810萬噸油輪的深水港,通過這一港口,中國船只能夠更快到達中東和波斯灣地區(qū),這相當于給中國平添了一條大動脈!在打造中巴經濟走廊協議(簡稱協議)中,能源投資約340億美元,公路投資約59億美元,鐵路投資約38億美元,高架鐵路投資約16億美元,瓜達爾港投資約6.6億美元,光纖通訊投資約為0.4億美元.

有消息稱,瓜達爾港的月貨物吞吐量將是目前天津、上海兩港口月貨物吞吐量之和.表格記錄了2015年天津、上海兩港口的月吞吐量(單位:百萬噸):

1月

2月

3月

4月

5月

6月

7月

8月

9月

10月

11月

12月

天津

24

22

26

23

24

26

27

25

28

24

25

26

上海

32

27

33

31

30

31

32

33

30

32

30

30

(Ⅰ)根據協議提供信息,用數據說明本次協議投資重點;

(Ⅱ)從表中12個月任選一個月,求該月天津、上海兩港口月吞吐量之和超過55百萬噸的概率;

(Ⅲ)將(Ⅱ)中的計算結果視為瓜達爾港每個月貨物吞吐量超過55百萬噸的概率,設為瓜達爾未來12個月的月貨物吞吐量超過55百萬噸的個數,寫出的數學期望(不需要計算過程).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c, asinB+bcosA=c. (Ⅰ)求B;
(Ⅱ)若a=2 c,SABC=2 ,求b.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《數學九章》中對已知三角形三邊長求三角形的面積的求法填補了我國傳統數學的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數學水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.”若把以上這段文字寫成公式,即S= .現有周長為2 + 的△ABC滿足sinA:sinB:sinC=( ﹣1): :( +1),試用以上給出的公式求得△ABC的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲乙丙丁四個物體同時從某一點出發(fā)向同一個方向運動,其路程fi(x)(i=1,2,3,4)關于時間x(x≥0)的函數關系式分別為 , 有以下結論:
①當x>1時,甲在最前面;
②當x>1時,乙在最前面;
③當0<x<1時,丁在最前面,當x>1時,丁在最后面;
④丙不可能在最前面,也不可能最最后面;
⑤如果它們已知運動下去,最終在最前面的是甲.
其中,正確結論的序號為(把正確結論的序號都填上,多填或少填均不得分)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C的方程為=1,A、B為橢圓C的左、右頂點,P為橢圓C上不同于A、B的動點,直線x=4與直線PA、PB分別交于M、N兩點;若D(7,0),則過D、M、N三點的圓必過x軸上不同于點D的定點,其坐標為________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, .

(1)證明: ,直線都不是曲線的切線;

(2)若,使成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若奇函數y=f(x)在區(qū)間(0,+∞)上是增函數,又f(﹣3)=0,則不等式f(x)<0的解集為(
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(0,3)
D.(﹣∞,﹣3)∪(3,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】國慶期間,高速公路堵車現象經常發(fā)生.某調查公司為了了解車速,在臨川收費站從7座以下小型汽車中按進收費站的先后順序,每間隔50輛就抽取一輛的抽樣方法抽取40輛汽車進行抽樣調查,將他們在某段高速公路的車速)分成六段后,得到如圖的頻率分布直方圖.

1)求這40輛小型汽車車速的眾數和中位數的估計值;

2若從這40輛車速在的小型汽車中任意抽取2輛,求抽出的2輛車車速都在的概率.

查看答案和解析>>

同步練習冊答案