【題目】過拋物線x2=4y的焦點(diǎn)F作直線AB,CD與拋物線交于A,B,C,D四點(diǎn),且AB⊥CD,則 + 的最大值等于 .
【答案】-16
【解析】解:如圖所示,
由拋物線x2=4y可得焦點(diǎn)F(0,1).
設(shè)直線AB的方程為:y=kx+1,(k≠0).
∵AB⊥CD,可得直線CD的方程為y=﹣ x+1.
設(shè)A(x1 , y1),B(x2 , y2),C(x3 , y3),D(x4 , y4).
聯(lián)立 ,化為x2﹣4kx﹣4=0,
得x1+x2=4k,x1x2=﹣4.
同理可得x3+x4=﹣ ,x3x4=﹣4.
∴ =(x1 , y1﹣1)(x2 , y2﹣1)=x1x2+(y1﹣1)(y2﹣1)=(1+k2)x1x2=﹣4(1+k2).
同理可得 =﹣4(1+ ).
∴ + =﹣4(2+k2+ )≤﹣4(2+2 )=﹣16,當(dāng)且僅當(dāng)k=±1時(shí)取等號(hào).
∴ + 的最大值等于﹣16.
所以答案是:﹣16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在“普及環(huán)保知識(shí)節(jié)”后,為了進(jìn)一步增強(qiáng)環(huán)保意識(shí),從本校學(xué)生中隨機(jī)抽取了一批學(xué)生參加環(huán)保基礎(chǔ)知識(shí)測(cè)試.經(jīng)統(tǒng)計(jì),這批學(xué)生測(cè)試的分?jǐn)?shù)全部介于75至100之間.將數(shù)據(jù)分成以下5組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100],得到如圖所示的頻率分布直方圖.
(Ⅰ)求a的值;
(Ⅱ)現(xiàn)采用分層抽樣的方法,從第3,4,5組中隨機(jī)抽取6名學(xué)生座談,求每組抽取的學(xué)生人數(shù);
(Ⅲ)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,試估計(jì)隨機(jī)抽取學(xué)生所得測(cè)試分?jǐn)?shù)的平均值在第幾組(只需寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( )
A.f(x)=|x|﹣4
B.y=
C.y=
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|0≤x≤2},B={y|1≤y≤2},若對(duì)于函數(shù)y=f(x),其定義域?yàn)锳,值域?yàn)锽,則這個(gè)函數(shù)的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)在定義域(0,+∞)上為增函數(shù),且滿足f(xy)=f(x)+f(y),f(3)=1.
(1)求f(9),f(27)的值;
(2)解不等式f(x)+f(x﹣8)<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC= AD=1,CD= .
(1)求證:平面PQB⊥平面PAD;
(2)若二面角M﹣QB﹣C為30°,求線段PM與線段MC的比值t.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四面體S﹣ABC中,若P為棱SC的中點(diǎn),那么異面直線PB與SA所成的角的余弦值等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)F為拋物線E:y2=2px(p>0)的焦點(diǎn),點(diǎn)A(3,m)在拋物線E上,且|AF|=4.
(1)求拋物線E的方程;
(2)已知點(diǎn)G(﹣1,0),延長(zhǎng)AF交拋物線E于點(diǎn)B,證明:以點(diǎn)F為圓心且與直線GA相切的圓,必與直線GB相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)n∈N*時(shí), ,Tn= + + +…+ . (Ⅰ)求S1 , S2 , T1 , T2;
(Ⅱ)猜想Sn與Tn的關(guān)系,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com