先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.
(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;
(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
(1)
(2)
【解析】本試題主要是考查了古典概型的概率的運用,以及結(jié)合枚舉法來求解概率的重要的解題思想的運用。
解:(1)先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b,事件總數(shù)為6×6=36.
∵直線ax+by+c=0與圓x2+y2=1相切的充要條件是
即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}
∴滿足條件的情況只有a=3,b=4,c=5;或a=4,b=3,c=5兩種情況.
∴直線ax+by+c=0與圓x2+y2=1相切的概率是 。。。。。6分
(2)先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b,事件總數(shù)為6×6=36.
∵三角形的一邊長為5
∴當a=1時,b=5,(1,5,5) 1種 。。。。。8分
當a=2時,b=5,(2,5,5) 1種
當a=3時,b=3,5,(3,3,5),(3,5,5) 2種
當a=4時,b=4,5,(4,4,5),(4,5,5) 2種 。。。。。9分
當a=5時,b=1,2,3,4,5,6,
(5,1,5),(5,2,5),(5,3,5),
(5,4,5),(5,5,5),(5,6,5) 6種
當a=6時,b=5,6,(6,5,5),(6,6,5) 2種 。。。。。10分
故滿足條件的不同情況共有14種
答:三條線段能圍成不同的等腰三角形的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆福建省漳州市高二上學(xué)期期末考試理科數(shù)學(xué)卷(解析版) 題型:解答題
先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a, b.
(1)求直線ax+by+5=0與圓 相切的概率;
(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010屆高三數(shù)學(xué)每周精析精練:概率 題型:解答題
先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.
(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;
(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com