【題目】函數(shù)的圖象拼成如圖所示的字形折線段,不含五個(gè)點(diǎn),若的圖象關(guān)于原點(diǎn)對(duì)稱的圖形即為的圖象,則其中一個(gè)函數(shù)的解析式可以為__________.

【答案】

【解析】

先根據(jù)圖象可以得出f (x)的圖象可以在OCCD中選取一個(gè),再在ABOB中選取一個(gè),即可得出函數(shù)f (x) 的解析式.

由圖可知,線段OC與線段OB是關(guān)于原點(diǎn)對(duì)稱的,線段CD與線段BA也是關(guān)于原點(diǎn)對(duì)稱的,根據(jù)題意,f (x) g (x) 的圖象關(guān)于原點(diǎn)對(duì)稱,所以f (x)的圖象可以在OCCD中選取一個(gè),再在ABOB中選取一個(gè),比如其組合形式為: OCAB CDOB,

不妨取f (x)的圖象為OCAB,

OC的方程為: AB的方程為: ,

所以,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定一個(gè)是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn).的充分必要條件使得是一個(gè)等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知復(fù)數(shù),求實(shí)數(shù)m的值,使得復(fù)數(shù)z分別是:

(1)0;(2)虛數(shù);(3)純虛數(shù);(4)復(fù)平面內(nèi)第二、四象限角平分線上的點(diǎn)對(duì)應(yīng)的復(fù)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018101日起,中華人民共和國(guó)個(gè)人所得稅新規(guī)定,公民月工資、薪金所得不超過(guò)5000元的部分不必納稅,超過(guò)5000元的部分為全月應(yīng)納稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:

全月應(yīng)納稅所得額

稅率

不超過(guò)1500元的部分

3

超過(guò)1500元不超過(guò)4500元的部分

10

超過(guò)4500元不超過(guò)9000元的部分

20

超過(guò)9000元不超過(guò)35000

25

如果小李10月份全月的工資、薪金為7000元,那么他應(yīng)該納稅多少元?

如果小張10月份交納稅金425元,那么他10月份的工資、薪金是多少元?

寫(xiě)出工資、薪金收入與應(yīng)繳納稅金的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】—只螞蟻在三邊長(zhǎng)分別為,,的三角形內(nèi)自由爬行,某時(shí)刻該螞蟻距離三角形的任意一個(gè)頂點(diǎn)的距離不超過(guò)的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)如圖,在邊長(zhǎng)為的菱形中,,點(diǎn),分別是邊的中點(diǎn),.沿翻折到,連接,得到如圖的五棱錐,且

1)求證:平面

2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)某種商品噸,此時(shí)所需生產(chǎn)費(fèi)用為萬(wàn)元,當(dāng)出售這種商品時(shí),每噸價(jià)格為萬(wàn)元,這里為常數(shù),.

1)為了使這種商品的生產(chǎn)費(fèi)用平均每噸最低,那么這種商品的產(chǎn)量應(yīng)為多少噸?

2)如果生產(chǎn)出來(lái)的商品能全部賣(mài)完,當(dāng)產(chǎn)量是120噸時(shí)企業(yè)利潤(rùn)最大,此時(shí)出售價(jià)格是每噸160萬(wàn)元,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在等比數(shù)列{an}中,a1=2,且a1,a2a3-2成等差數(shù)列.

1)求數(shù)列{an}的通項(xiàng)公式;

2)若數(shù)列{bn}滿足:,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)存在兩個(gè)極值點(diǎn),且,證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案