【題目】已知橢圓 的左、右焦點(diǎn)分別為, ,點(diǎn)在橢圓上.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)是否存在斜率為2的直線,使得當(dāng)直線與橢圓有兩個(gè)不同交點(diǎn)、時(shí),能在直線上找到一點(diǎn),在橢圓上找到一點(diǎn),滿足?若存在,求出直線的方程;若不存在,說明理由.

【答案】(1;(2)不存在這樣的點(diǎn),理由見解析.

【解析】試題分析:(1)借助題設(shè)條件運(yùn)用橢圓定義建立方程求解;(2)借助題設(shè)運(yùn)用直線與橢圓的位置關(guān)系探求.

試題解析:

1)設(shè)橢圓的焦距為,則,

因?yàn)?/span>在橢圓上,所以,

因此, ,故橢圓的方程為

2)橢圓上不存在這樣的點(diǎn).證明如下:

設(shè)直線的方程為,

設(shè), , , 的中點(diǎn)為,

,

所以,且,故,且,

知四邊形為平行四邊形,

為線段的中點(diǎn),因此, 也是線段的中點(diǎn),

所以,可得,

,所以,

因此點(diǎn)不在橢圓上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】劉老師是一位經(jīng)驗(yàn)豐富的高三理科班班主任,經(jīng)長(zhǎng)期研究,他發(fā)現(xiàn)高中理科班的學(xué)生的數(shù)學(xué)成績(jī)(總分150分)與理綜成績(jī)(物理、化學(xué)與生物的綜合,總分300分)具有較強(qiáng)的線性相關(guān)性,以下是劉老師隨機(jī)選取的八名學(xué)生在高考中的數(shù)學(xué)得分x與理綜得分y(如下表):

學(xué)生編號(hào)

1

2

3

4

5

6

7

8

數(shù)學(xué)分?jǐn)?shù)x

52

64

87

96

105

123

132

141

理綜分?jǐn)?shù)y

112

132

177

190

218

239

257

275

參考數(shù)據(jù)及公式:

(1)求出y關(guān)于x的線性回歸方程;

(2)若小汪高考數(shù)學(xué)110分,請(qǐng)你預(yù)測(cè)他理綜得分約為多少分?(精確到整數(shù)位);

(3)小金同學(xué)的文科一般,語文與英語一起能穩(wěn)定在215分左右.如果他的目標(biāo)是在

高考總分沖擊600分,請(qǐng)你幫他估算他的數(shù)學(xué)與理綜大約分別至少需要拿到多少分?(精確到整數(shù)位).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,棱形的邊長(zhǎng)為6, ,.將棱形沿對(duì)角線折起,得到三棱錐,點(diǎn)是棱的中點(diǎn), .

(Ⅰ)求證:∥平面;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】衡州市臨棗中學(xué)高二某小組隨機(jī)調(diào)查芙蓉社區(qū)160個(gè)人,以研究這一社區(qū)居民在20:00-22:00時(shí)間段的休閑方式與性別的關(guān)系,得到下面的數(shù)據(jù)表:

休閑方式

性別

看電視

看書

合計(jì)

20

100

120

20

20

40

合計(jì)

40

120

160

下面臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(Ⅰ)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時(shí)間段以看書為休閑方式的人數(shù)為隨機(jī)變量,求 的分別列和期望;

(Ⅱ)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00-22:00時(shí)間段的休閑方式與性別有關(guān)系”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某單位員工的月工資水平,從該單位500位員工中隨機(jī)抽取了50位進(jìn)行調(diào)查,得到如下頻數(shù)分布表和頻率分布直方圖:

月工資

(單位:百元)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

男員工數(shù)

1

8

10

6

4

4

女員工數(shù)

4

2

5

4

1

1

(1) 試由上圖估計(jì)該單位員工月平均工資;

(2)現(xiàn)用分層抽樣的方法從月工資在的兩組所調(diào)查的男員工中隨機(jī)選取5人,問各應(yīng)抽取多少人?

(3)若從月工資在兩組所調(diào)查的女員工中隨機(jī)選取2人,試求這2人月工資差不超過1000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=2n2,{bn}為等比數(shù)列,且a1b1,b2(a2a1)=b1

(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;

(2)設(shè)cn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù).

(1)當(dāng)時(shí),求在區(qū)間上的最值;

(2)討論的單調(diào)性;

(3)當(dāng)時(shí),有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),橢圓的離心率為,是橢圓的右焦點(diǎn),直線的斜率為為坐標(biāo)原點(diǎn).

(1)求的方程;

(2)設(shè)過點(diǎn)的動(dòng)直線相交于兩點(diǎn),問:是否存在直線,使以為直徑的圓經(jīng)過原點(diǎn),若存在,求出對(duì)應(yīng)直線的方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行了一次環(huán)保知識(shí)競(jìng)賽, 全校學(xué)生參加了這次競(jìng)賽.為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì).請(qǐng)根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:


組別

分組

頻數(shù)

頻率

1

[5060

8

0 16

2

[60,70

a


3

[7080

20

0 40

4

[80,90


0 08

5

[90,100]

2

b


合計(jì)



1)求出的值;

2)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到廣場(chǎng)參加環(huán)保知識(shí)的志愿宣傳活動(dòng)

)求所抽取的2名同學(xué)中至少有1名同學(xué)來自第5組的概率;

)求所抽取的2名同學(xué)來自同一組的概率

查看答案和解析>>

同步練習(xí)冊(cè)答案