設(shè)函數(shù).
(1)若時有極值,求實(shí)數(shù)的值和的極大值;
(2)若在定義域上是增函數(shù),求實(shí)數(shù)的取值范圍.
(1)極大值為(2)

試題分析:(1)先求導(dǎo),根據(jù)時有極值,則,可求得的值。代入導(dǎo)數(shù)解析式并整理,令導(dǎo)數(shù)大于0可得增區(qū)間,令導(dǎo)數(shù)小于0可得減區(qū)間。根據(jù)單調(diào)性可求極值。(2)在定義域上是增函數(shù),則當(dāng)恒成立。因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240522407991139.png" style="vertical-align:middle;" />,且,所以只需,即恒成立。可用基本不等式求的最大值則。
(1)∵時有極值,∴有
 ∴,∴        2分
∴有

∴由

在區(qū)間上遞增,在區(qū)間上遞減     5分
的極大值為     6分
(2)若在定義域上是增函數(shù),則時恒成立

恒成立,           9分
恒成立,
,為所求。         12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=(x-a)(x-b)2,a,b是常數(shù).
(1)若a≠b,求證:函數(shù)f(x)存在極大值和極小值;
(2)設(shè)(1)中f(x)取得極大值、極小值時自變量的值分別為x1,x2,設(shè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)).如果直線AB的斜率為-,求函數(shù)f(x)和f′(x)的公共遞減區(qū)間的長度;
(3)若f(x)≥mxf′(x)對于一切x∈R恒成立,求實(shí)數(shù)m,a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的的單調(diào)遞減區(qū)間是           。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=x2-2lnx的單調(diào)遞減區(qū)間是(  )
A.(0,1]B.[1,+∞)
C.(-∞,-1]∪(0,1]D.[-1,0)∪(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ln x+2x,g(x)=a(x2+x).
(1)若a=,求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為單調(diào)增函數(shù),則實(shí)數(shù)的取值范圍為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),曲線在點(diǎn)處的切線與直線垂直.
(1)求的值;
(2)若對于任意的,恒成立,求的范圍;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

水庫的蓄水量隨時間而變化,現(xiàn)用表示時間,以月為單位,年初為起點(diǎn),根據(jù)歷年數(shù)據(jù),某水庫的蓄水量(單位:億立方米)關(guān)于的近似函數(shù)關(guān)系式為

(1)該水庫的蓄求量小于50的時期稱為枯水期.以表示第1月份(),同一年內(nèi)哪幾個月份是枯水期?
(2)求一年內(nèi)該水庫的最大蓄水量(取計(jì)算).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)在區(qū)間上是減函數(shù),那么的最大值為            

查看答案和解析>>

同步練習(xí)冊答案