【題目】若存在滿足下列三個條件的集合,,,則稱偶數(shù)為“萌數(shù)”:
①集合,,為集合的個非空子集,,,兩兩之間的交集為空集,且;②集合中的所有數(shù)均為奇數(shù),集合中的所有數(shù)均為偶數(shù),所有的倍數(shù)都在集合中;③集合,,所有元素的和分別為,,,且.注:.
(1)判斷:是否為“萌數(shù)”?若為“萌數(shù)”,寫出符合條件的集合,,,若不是“萌數(shù)”,說明理由.
(2)證明:“”是“偶數(shù)為萌數(shù)”成立的必要條件.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中, 平面平面,.
(1)求證:平面;
(2)求直線與平面所成角的正弦值;
(3)在棱上是否存在點,使得平面?若存在, 求的值;若不存在, 說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某地區(qū)觀眾對大型綜藝活動《中國好聲音》的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場數(shù)與所對應的人數(shù)表:
場數(shù) | 9 | 10 | 11 | 12 | 13 | 14 |
人數(shù) | 10 | 18 | 22 | 25 | 20 | 5 |
將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料我們能否有95%的把握認為“歌迷”與性別有關(guān)?
非歌迷 | 歌迷 | 合計 | |
男 | |||
女 | |||
合計 |
(2)將收看該節(jié)目所有場次(14場)的觀眾稱為“超級歌迷”,已知“超級歌迷”中有2名女性,若從“超級歌迷”中任意選取2人,求至少有1名女性觀眾的概率.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
附:K2=.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若數(shù)列對任意滿足,下面給出關(guān)于數(shù)列的四個命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個數(shù)為( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的圓心為,且直線與圓相切,設直線的方程為,若點在直線上,過點作圓的切線,切點為.
(1)求圓的標準方程;
(2)若,試求點的坐標;
(3)若點的坐標為,過點作直線與圓交于兩點,當時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】單位計劃組織55名職工進行一種疾病的篩查,先到本單位醫(yī)務室進行血檢,血檢呈陽性者再到醫(yī)院進一步檢測.已知隨機一人血檢呈陽性的概率為 1% ,且每個人血檢是否呈陽性相互獨立.
(Ⅰ) 根據(jù)經(jīng)驗,采用分組檢測法可有效減少工作量,具體操作如下:將待檢人員隨機等分成若干組,先將每組的血樣混在一起化驗,若結(jié)果呈陰性,則可斷定本組血樣全部為陰性,不必再化驗;若結(jié)果呈陽性,則本組中至少有一人呈陽性,再逐個化驗.
現(xiàn)有兩個分組方案:
方案一: 將 55 人分成 11 組,每組 5 人;
方案二:將 55 人分成5組,每組 11 人;
試分析哪一個方案工作量更少?
(Ⅱ) 若該疾病的患病率為 0.4% ,且患該疾病者血檢呈陽性的概率為99% ,該單位有一職工血檢呈陽性,求該職工確實患該疾病的概率.(參考數(shù)據(jù): )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com