【題目】已知數(shù)列{an}滿足a1=1,an+1=2an+n﹣1
(1)求證:數(shù)列{an+n}是等比數(shù)列;
(2)求數(shù)列{an}的通項和前n項和Sn .
【答案】
(1)證明:由數(shù)列{an}滿足a1=1,an+1=2an+n﹣1,變形為an+1+(n+1)=2(an+n).
∴數(shù)列{an+n}是等比數(shù)列,其中首項為a1+1=2,公比為2;
(2)解:由(1)可得: ,∴ .
∴Sn= =2n+1﹣2﹣
【解析】(1)由數(shù)列{an}滿足a1=1,an+1=2an+n﹣1,變形為an+1+(n+1)=2(an+n)即可證明;(2)利用等比數(shù)列的通項公式、等比數(shù)列與等差數(shù)列的前n項和公式即可得出.
【考點精析】解答此題的關鍵在于理解等比關系的確定的相關知識,掌握等比數(shù)列可以通過定義法、中項法、通項公式法、前n項和法進行判斷,以及對數(shù)列的前n項和的理解,了解數(shù)列{an}的前n項和sn與通項an的關系.
科目:高中數(shù)學 來源: 題型:
【題目】設關于某產品的明星代言費x(百萬元)和其銷售額y(百萬元),有如表的統(tǒng)計表格:
i | 1 | 2 | 3 | 4 | 5 | 合計 |
xi(百萬元) | 1.26 | 1.44 | 1.59 | 1.71 | 1.82 | 7.82 |
wi(百萬元) | 2.00 | 2.99 | 4.02 | 5.00 | 6.03 | 20.04 |
yi(百萬元) | 3.20 | 4.80 | 6.50 | 7.50 | 8.00 | 30.00 |
=1.56, =4.01, =6, xiyi=48.66, wiyi=132.62, (xi﹣ )2=0.20, (wi﹣ )2=10.14 |
其中 .
(1)在坐標系中,作出銷售額y關于廣告費x的回歸方程的散點圖,根據(jù)散點圖指出:y=a+blnx,y=c+dx3哪一個適合作銷售額y關于明星代言費x的回歸類方程(不需要說明理由);
(2)已知這種產品的純收益z(百萬元)與x,y有如下關系:x=0.2y﹣0.726x(x∈[1.00,2.00]),試寫出z=f(x)的函數(shù)關系式,試估計當x取何值時,純收益z取最大值?(以上計算過程中的數(shù)據(jù)統(tǒng)一保留到小數(shù)點第2位)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了得到函數(shù)y=sin2x的圖象,只需把函數(shù)y=sin(2x﹣ )的圖象( )
A.向左平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向右平移 個單位長度
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,證明: 為偶函數(shù);
(2)若在上單調遞增,求實數(shù)的取值范圍;
(3)若,求實數(shù)的取值范圍,使在上恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)給出下列四個命題:
①c = 0時,是奇函數(shù); ②時,方程只有一個實根;
③的圖象關于點(0 , c)對稱; ④方程至多3個實根.
其中正確的命題個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在上的函數(shù)滿足:
①對于任意的,都有;
②當時,,且.
(1)求,的值,并判斷函數(shù)的奇偶性;
(2)判斷函數(shù)在上的單調性;
(3)求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在海岸A處,發(fā)現(xiàn)南偏東45°方向距A為(2-2)海里的B處有一艘走私船,在A處正北方向,距A為海里的C處的緝私船立即奉命以10海里/時的速度追截走私船.
(1)剛發(fā)現(xiàn)走私船時,求兩船的距離;
(2)若走私船正以10海里/時的速度從B處向南偏東75°方向逃竄,問緝私船沿什么方向能最快追上走私船?并求出所需要的時間(精確到分鐘,參考數(shù)據(jù):≈1.4,≈2.5).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱柱中, 平面, , , 為的中點.
(1)求四棱錐的體積;
(2)求證: ;
(3)判斷線段上是否存在一點 (與點不重合),使得四點共面? (結論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sinx,若存在x1 , x2 , …,xn滿足0≤x1<x2<…<xn≤nπ,n∈N+ , 且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xm﹣1)﹣f(xm)|=12,(m≥2,m∈N+),當m取最小值時,n的最小值為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com