解:(1)lg|x|+lg|7-x|=lg|7x-x
2|.∵-1≤x≤2∴7x-x
2∈[-8,10],|7x-x
2|∈[0,10]∴最大值為1(此時(shí)x=2)
(2)令t=(2
x+2
-x)(t≥2),則y=3t
2-10t-6(t≥2),∴y≥-14(此時(shí)x=1)
(3)由已知,
,f(x)=(log
2x-1)(log
2x-2)=log
22x-3log
2x+2,令t=log
2x
則y=t
2-3t+2,函數(shù)f(x)的最小值為
(此時(shí)x=8),最大值為2(此時(shí)
)
分析:(1)將lg|x|+lg|7-x|化為lg|7x-x
2|,通過求7x-x
2的取值范圍解決.
(2)令t=(2
x+2
-x)進(jìn)行換元.轉(zhuǎn)化為二次函數(shù)解決.
(3)根據(jù)對數(shù)的運(yùn)算法則,,f(x)=(log
2x-1)(log
2x-2)=log
22x-3log
2x+2,令t=log
2x,轉(zhuǎn)化為二次函數(shù)解決.
點(diǎn)評:本題考查對數(shù)的運(yùn)算,二次函數(shù)性質(zhì)、換元法,考查分析解決問題、計(jì)算能力.