【題目】如圖,已知四棱錐,平面平面,四邊形是菱形,.

1)若,證明:

2)若,求平面與平面所成銳二面角的余弦值.

【答案】1)證明見(jiàn)解析;(2.

【解析】

1)根據(jù)題意,取中點(diǎn)為,通過(guò)證明平面進(jìn)而推證線(xiàn)線(xiàn)垂直;

2)以對(duì)角線(xiàn)的交點(diǎn)為,建立直角坐標(biāo)系,求出兩個(gè)平面的法向量,通過(guò)求解法向量的夾角,進(jìn)而求得二面角的大小.

1)取的中點(diǎn),連接,.如下圖所示:

,∴.

∵四邊形是菱形,且

,∴.

,∴平面,

.

又在菱形中,,

.

2)設(shè)交于點(diǎn),建立如圖所示的空間直角坐標(biāo)系,

不妨設(shè),

.

,.

由(1)知

∵平面平面,

平面.

,,

,

設(shè)平面的法向量為,

,∴,

,得.

設(shè)平面的法向量為,

,∴,

,得.

設(shè)平面與平面所成銳二面角為

.

故平面與平面所成銳二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車(chē)間生產(chǎn)甲、乙兩種產(chǎn)品,已知制造一件甲產(chǎn)品需要種元件5個(gè),種元件2個(gè),制造一件乙種產(chǎn)品需要種元件3個(gè),種元件3個(gè),現(xiàn)在只有種元件180個(gè),種元件135個(gè),每件甲產(chǎn)品可獲利潤(rùn)20元,每件乙產(chǎn)品可獲利潤(rùn)15元,試問(wèn)在這種條件下,應(yīng)如何安排生產(chǎn)計(jì)劃才能得到最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)a1,函數(shù).

1)判斷并證明f(x)g(x)的奇偶性;

2)求g(x)的值域;

3)若xR,都有|f(x)|≥|g(x)|成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線(xiàn)方程;

(2)是否存在實(shí)數(shù)a,使函數(shù)在區(qū)間上的最小值為,若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究每周累計(jì)戶(hù)外暴露時(shí)間是否足夠(單位:小時(shí))與近視發(fā)病率的關(guān)系,對(duì)某中學(xué)一年級(jí)名學(xué)生進(jìn)行不記名問(wèn)卷調(diào)查,得到如下數(shù)據(jù):

1)用樣本估計(jì)總體思想估計(jì)該中學(xué)一年級(jí)學(xué)生的近視率;

2)能否認(rèn)為在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為不足夠的戶(hù)外暴露時(shí)間與近視有關(guān)系?

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某教師調(diào)查了名高三學(xué)生購(gòu)買(mǎi)的數(shù)學(xué)課外輔導(dǎo)書(shū)的數(shù)量,將統(tǒng)計(jì)數(shù)據(jù)制成如下表格:

男生

女生

總計(jì)

購(gòu)買(mǎi)數(shù)學(xué)課外輔導(dǎo)書(shū)超過(guò)

購(gòu)買(mǎi)數(shù)學(xué)課外輔導(dǎo)書(shū)不超過(guò)

總計(jì)

(Ⅰ)根據(jù)表格中的數(shù)據(jù),是否有的把握認(rèn)為購(gòu)買(mǎi)數(shù)學(xué)課外輔導(dǎo)書(shū)的數(shù)量與性別相關(guān);

(Ⅱ)從購(gòu)買(mǎi)數(shù)學(xué)課外輔導(dǎo)書(shū)不超過(guò)本的學(xué)生中,按照性別分層抽樣抽取人,再?gòu)倪@人中隨機(jī)抽取人詢(xún)問(wèn)購(gòu)買(mǎi)原因,求恰有名男生被抽到的概率.

附: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐PABCD的底面是梯形.BCADABBCCD1,AD2,,

(Ⅰ)證明;ACBP;

(Ⅱ)求直線(xiàn)AD與平面APC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知fx)=|2x1||2x+1|.

1)求不等式fx)>1的解集.

2)當(dāng)時(shí),求證:4x2+4x+2>(2x+1fx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩種理財(cái)產(chǎn)品,投資這兩種理財(cái)產(chǎn)品一年后盈虧的情況如下(每種理財(cái)產(chǎn)品的不同投資結(jié)果之間相互獨(dú)立):

產(chǎn)品

投資結(jié)果

獲利

不賠不賺

虧損

概率

產(chǎn)品

投資結(jié)果

獲利

不賠不賺

虧損

概率

注:,

1)若甲、乙兩人分別選擇了產(chǎn)品投資,一年后他們中至少有一人獲利的概率大于,求實(shí)數(shù)的取值范圍;

2)若丙要將20萬(wàn)元人民幣投資其中一種產(chǎn)品,以一年后的投資收益的期望值為決策依據(jù),則丙選擇哪種產(chǎn)品投資較為理想.

查看答案和解析>>

同步練習(xí)冊(cè)答案