【題目】已知函數(shù),;
若函數(shù)在上存在零點(diǎn),求a的取值范圍;
設(shè)函數(shù),,當(dāng)時(shí),若對(duì)任意的,總存在,使得,求的取值范圍.
【答案】(1)(2)
【解析】
(1)在單調(diào)遞減且存在零點(diǎn),根據(jù)零點(diǎn)存在定理可得:,即可求得a的取值范圍;
(2)對(duì)進(jìn)行討論,判斷的單調(diào)性,分別求出,在的值域,令的值域?yàn)?/span>的值域的子集,列出不等式組,即可得出的范圍.
(1)的函數(shù)圖像開(kāi)口向上,對(duì)稱(chēng)軸為
在上是減函數(shù),
函數(shù)在上存在零點(diǎn)
根據(jù)零點(diǎn)存在定理可得: 即:
解得:
(2)時(shí),
在上單調(diào)遞減,在上單調(diào)遞增
在上的最小值為,最大值為
即在上的值域?yàn)?/span>
設(shè)在上的值域?yàn)?/span>
對(duì)任意的,總存在使得
①當(dāng)時(shí),,符合題意;
②當(dāng)時(shí),在上是增函數(shù)
,解得:
③當(dāng)時(shí), 在上是減函數(shù),
,解得:
綜上所述:取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)的學(xué)生積極參加體育鍛煉,其中有96%的學(xué)生喜歡足球或游泳,60%的學(xué)生喜歡足球,82%的學(xué)生喜歡游泳,則該中學(xué)既喜歡足球又喜歡游泳的學(xué)生數(shù)占該校學(xué)生總數(shù)的比例是( )
A.62%B.56%
C.46%D.42%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓過(guò)點(diǎn),且直線(xiàn)過(guò)的左焦點(diǎn).
(1)求的方程;
(2)設(shè)為上的任一點(diǎn),記動(dòng)點(diǎn)的軌跡為,與軸的負(fù)半軸、軸的正半軸分別交于點(diǎn),的短軸端點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)分別為、,當(dāng)點(diǎn)在直線(xiàn)上運(yùn)動(dòng)時(shí),求的最小值;
(3)如圖,直線(xiàn)經(jīng)過(guò)的右焦點(diǎn),并交于兩點(diǎn),且在直線(xiàn)上的射影依次為,當(dāng)繞轉(zhuǎn)動(dòng)時(shí),直線(xiàn)與是否相交于定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo),否則,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視臺(tái)在一次對(duì)收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調(diào)查中,隨機(jī)抽取了100名電視觀眾,相關(guān)的數(shù)據(jù)如下表所示:
文藝節(jié)目 | 新聞節(jié)目 | 總計(jì) | |
20至40歲 | 30 | 18 | 48 |
大于40歲 | 20 | 32 | 52 |
總計(jì) | 50 | 50 | 100 |
(1)用分層抽樣方法在收看文藝節(jié)目的觀眾中隨機(jī)抽取5名,大于40歲的觀眾應(yīng)該抽取幾名?
(2)在上述抽取的5名觀眾中任取2名,求恰有1名觀眾的年齡為大于40歲的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)
(1)討論函數(shù)在區(qū)間上的極值點(diǎn)的個(gè)數(shù);
(2)已知對(duì)任意的恒成立,求實(shí)數(shù)k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)有兩個(gè)不同零點(diǎn)、(),設(shè)函數(shù)的定義域?yàn)?/span>,且的最大值記為,最小值記為.
(1)求(用表示);
(2)當(dāng)時(shí),試問(wèn)以、、為長(zhǎng)度的線(xiàn)段能否組成一個(gè)三角形,如果不一定,進(jìn)一步求出的取值范圍,使它們能組成一個(gè)三角形;
(3)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面給出了根據(jù)我國(guó)2012年~2018年水果人均占有量(單位:)和年份代碼繪制的散點(diǎn)圖和線(xiàn)性回歸方程的殘差圖(2012年~2018年的年份代碼分別為1~7).
(1)根據(jù)散點(diǎn)圖分析與之間的相關(guān)關(guān)系;
(2)根據(jù)散點(diǎn)圖相應(yīng)數(shù)據(jù)計(jì)算得,求關(guān)于的線(xiàn)性回歸方程;
(3)根據(jù)線(xiàn)性回歸方程的殘差圖,分析線(xiàn)性回歸方程的擬合效果.(精確到0.01)
附:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),若對(duì)任意、,且,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( )
A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中后占一半以上
B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的
C. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)后比前多
D. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)后比后多
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com